Suppr超能文献

使用英国生物银行对肾癌风险预测模型进行验证和公共卫生建模。

Validation and public health modelling of risk prediction models for kidney cancer using the UK Biobank.

作者信息

Harrison Hannah, Pennells Lisa, Wood Angela, Rossi Sabrina H, Stewart Grant D, Griffin Simon J, Usher-Smith Juliet A

机构信息

Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.

出版信息

BJU Int. 2022 Apr;129(4):498-511. doi: 10.1111/bju.15598. Epub 2021 Oct 7.

Abstract

OBJECTIVES

To externally validate risk models for the detection of kidney cancer, as early detection of kidney cancer improves survival and stratifying the population using risk models could enable an individually tailored screening programme.

METHODS

We validated the performance of 30 existing phenotypic models predicting the risk of kidney cancer in the UK Biobank cohort (n = 450 687). We compared the discrimination and calibration of models for men, women, and a mixed-sex cohort. Population level data were used to estimate model performance in a screening scenario for a range of risk thresholds (6-year risk: 0.1-1.0%).

RESULTS

In all, 10 models had reasonable discrimination (area under the receiver-operating characteristic curve >0.60), although some had poor calibration. Modelling demonstrated similar performance of the best models over a range of thresholds. The models showed an improvement in ability to identify cases compared to age- and sex-based screening. All the models performed less well in women than men.

CONCLUSIONS

The present study is the first comprehensive external validation of risk models for kidney cancer. The best-performing models are better at identifying individuals at high risk of kidney cancer than age and sex alone; however, the benefits are relatively small. Feasibility studies are required to determine applicability to a screening programme.

摘要

目的

对用于检测肾癌的风险模型进行外部验证,因为早期发现肾癌可提高生存率,并且使用风险模型对人群进行分层能够制定个性化的筛查方案。

方法

我们在英国生物银行队列(n = 450687)中验证了30个现代表型模型预测肾癌风险的性能。我们比较了男性、女性以及混合性别队列模型的区分度和校准情况。使用人群水平数据来估计一系列风险阈值(6年风险:0.1 - 1.0%)筛查场景下的模型性能。

结果

总体而言,10个模型具有合理的区分度(受试者操作特征曲线下面积>0.60),尽管有些模型校准不佳。建模表明,在一系列阈值范围内,最佳模型的性能相似。与基于年龄和性别的筛查相比,这些模型在识别病例的能力上有所提高。所有模型在女性中的表现均不如男性。

结论

本研究是对肾癌风险模型的首次全面外部验证。表现最佳的模型在识别肾癌高危个体方面比仅依靠年龄和性别更具优势;然而,优势相对较小。需要进行可行性研究以确定其在筛查方案中的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验