Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA.
Department of Biology, Indiana University Bloomingtongrid.411377.7, Bloomington, Indiana, USA.
mBio. 2021 Oct 26;12(5):e0238521. doi: 10.1128/mBio.02385-21. Epub 2021 Sep 21.
RNases perform indispensable functions in regulating gene expression in many bacterial pathogens by processing and/or degrading RNAs. Despite the pivotal role of RNases in regulating bacterial virulence factors, the functions of RNases have not yet been studied in the major human respiratory pathogen Streptococcus pneumoniae (pneumococcus). Here, we sought to determine the impact of two conserved RNases, the endoribonuclease RNase Y and exoribonuclease polynucleotide phosphorylase (PNPase), on the physiology and virulence of S. pneumoniae serotype 2 strain D39. We report that RNase Y and PNPase are essential for pneumococcal pathogenesis, as both deletion mutants showed strong attenuation of virulence in murine models of invasive pneumonia. Genome-wide transcriptomic analysis revealed that the abundances of nearly 200 mRNA transcripts were significantly increased, whereas those of several pneumococcal small regulatory RNAs (sRNAs), including the Ccn (iaR-ontrolled oncoding RNA) sRNAs, were altered in the Δ mutant relative to the wild-type strain. Additionally, lack of RNase Y resulted in pleiotropic phenotypes that included defects in pneumococcal cell morphology and growth . In contrast, Δ mutants showed no growth defect but differentially expressed a total of 40 transcripts, including the tryptophan biosynthesis operon genes and numerous 5' -acting regulatory RNAs, a majority of which were previously shown to impact pneumococcal disease progression in mice using the serotype 4 strain TIGR4. Together, our data suggest that RNase Y exerts a global impact on pneumococcal physiology, while PNPase mediates virulence phenotypes, likely through sRNA regulation. Streptococcus pneumoniae is a notorious human pathogen that adapts to conditions in distinct host tissues and responds to host cell interactions by adjusting gene expression. RNases are key players that modulate gene expression by mediating the turnover of regulatory and protein-coding transcripts. Here, we characterized two highly conserved RNases, RNase Y and PNPase, and evaluated their impact on the S. pneumoniae transcriptome for the first time. We show that PNPase influences the levels of a narrow set of mRNAs but a large number of regulatory RNAs primarily implicated in virulence control, whereas RNase Y has a more sweeping effect on gene expression, altering levels of transcripts involved in diverse cellular processes, including cell division, metabolism, stress response, and virulence. This study further reveals that RNase Y regulates expression of genes governing competence by mediating the turnover of iaR-ontrolled oncoding (Ccn) sRNAs.
RNases 通过加工和/或降解 RNA 在许多细菌病原体中执行不可或缺的功能,从而调节基因表达。尽管 RNases 在调节细菌毒力因子方面发挥着关键作用,但在主要的人类呼吸道病原体肺炎链球菌(肺炎球菌)中,RNases 的功能尚未得到研究。在这里,我们试图确定两种保守的 RNases,内切核糖核酸酶 RNase Y 和外切核糖核酸酶多核苷酸磷酸化酶(PNPase),对肺炎链球菌 2 型菌株 D39 的生理学和毒力的影响。我们报告说,RNase Y 和 PNPase 对肺炎球菌发病机制是必不可少的,因为这两种缺失突变体在侵袭性肺炎的小鼠模型中均表现出强烈的毒力减弱。全基因组转录组分析显示,近 200 个 mRNA 转录本的丰度显著增加,而包括 Ccn(iaR 控制的致癌 RNA)sRNAs 在内的几种肺炎球菌小调控 RNA(sRNA)的丰度在Δ突变体中发生改变与野生型菌株相比。此外,缺乏 RNase Y 导致肺炎球菌细胞形态和生长的多种表型缺陷。相比之下,Δ突变体没有生长缺陷,但总共表达了 40 个转录本,包括色氨酸生物合成操纵子基因和许多 5'-作用调控 RNA,其中大多数先前使用 4 型菌株 TIGR4 在小鼠中显示出对肺炎球菌疾病进展的影响。总之,我们的数据表明,RNase Y 对肺炎球菌生理学产生全局影响,而 PNPase 通过 sRNA 调节介导毒力表型。肺炎链球菌是一种臭名昭著的人类病原体,它适应于不同宿主组织中的条件,并通过调整基因表达来响应宿主细胞相互作用。RNases 是通过调节调节和蛋白质编码转录本的周转来调节基因表达的关键参与者。在这里,我们首次描述了两种高度保守的 RNases,RNase Y 和 PNPase,并评估了它们对肺炎链球菌转录组的影响。我们表明,PNPase 影响一组狭窄的 mRNAs 的水平,但大量的调控 RNA 主要涉及毒力控制,而 RNase Y 对基因表达有更广泛的影响,改变参与多种细胞过程的转录本的水平,包括细胞分裂、代谢、应激反应和毒力。这项研究进一步揭示了 RNase Y 通过调节 iaR 控制的致癌(Ccn)sRNAs 的周转来调节参与感受态的基因表达。