Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom.
J Neurosci. 2021 Nov 3;41(44):9141-9162. doi: 10.1523/JNEUROSCI.0187-21.2021. Epub 2021 Sep 20.
The potassium channel Kv1.6 has recently been implicated as a major modulatory channel subunit expressed in primary nociceptors. Furthermore, its expression at juxtaparanodes of myelinated primary afferents is induced following traumatic nerve injury as part of an endogenous mechanism to reduce hyperexcitability and pain-related hypersensitivity. In this study, we compared two mouse models of constitutive Kv1.6 knock-out (KO) achieved by different methods: traditional gene trap via homologous recombination and CRISPR-mediated excision. Both Kv1.6 KO mouse lines exhibited an unexpected reduction in sensitivity to noxious heat stimuli, to differing extents: the Kv1.6 mice produced via gene trap had a far more significant hyposensitivity. These mice ( ) expressed the bacterial reporter enzyme LacZ in place of Kv1.6 as a result of the gene trap mechanism, and we found that their central primary afferent presynaptic terminals developed a striking neurodegenerative phenotype involving accumulation of lipid species, development of "meganeurites," and impaired transmission to dorsal horn wide dynamic range neurons. The anatomic defects were absent in CRISPR-mediated Kv1.6 KO mice () but were present in a third mouse model expressing exogenous LacZ in nociceptors under the control of a Nav1.8-promoted Cre recombinase. LacZ reporter enzymes are thus intrinsically neurotoxic to sensory neurons and may induce pathologic defects in transgenic mice, which has confounding implications for the interpretation of gene KOs using Nonetheless, in mice not affected by LacZ, we demonstrated a significant role for Kv1.6 regulating acute noxious thermal sensitivity, and both mechanical and thermal pain-related hypersensitivity after nerve injury. In recent decades, the expansion of technologies to experimentally manipulate the rodent genome has contributed significantly to the field of neuroscience. While introduction of enzymatic or fluorescent reporter proteins to label neuronal populations is now commonplace, often potential toxicity effects are not fully considered. We show a role of Kv1.6 in acute and neuropathic pain states through analysis of two mouse models lacking Kv1.6 potassium channels: one with additional expression of LacZ and one without. We show that LacZ reporter enzymes induce unintended defects in sensory neurons, with an impact on behavioral data outcomes. To summarize we highlight the importance of Kv1.6 in recovery of normal sensory function following nerve injury, and careful interpretation of data from LacZ reporter models.
钾通道 Kv1.6 最近被认为是初级伤害感受器中主要的调节性通道亚基。此外,在创伤性神经损伤后,其在有髓初级传入纤维的 juxtaparanodes 表达被诱导,作为减少过度兴奋和与疼痛相关的超敏反应的内源性机制的一部分。在这项研究中,我们比较了两种通过不同方法实现的组成型 Kv1.6 敲除 (KO) 小鼠模型:通过同源重组的传统基因陷阱和 CRISPR 介导的切除。两种 Kv1.6 KO 小鼠模型都表现出对有害热刺激的敏感性降低,程度不同:通过基因陷阱产生的 Kv1.6 KO 小鼠的敏感性降低更为显著。这些小鼠()由于基因陷阱机制,在 Kv1.6 的位置表达了细菌报告酶 LacZ,我们发现它们的中枢初级传入节前末端表现出一种显著的神经退行性表型,涉及脂质物质的积累、“meganeurites”的发育和对背角宽动态范围神经元的传递受损。在 CRISPR 介导的 Kv1.6 KO 小鼠()中不存在解剖缺陷,但在另一种表达外源性 LacZ 的小鼠中存在,该 LacZ 在 Nav1.8 促进的 Cre 重组酶控制下在伤害感受器中表达。LacZ 报告酶对感觉神经元具有内在的神经毒性,并且可能在转基因小鼠中诱导病理缺陷,这对使用基因 KO 解释具有混淆性。尽管如此,在不受 LacZ 影响的()小鼠中,我们证明了 Kv1.6 在调节急性有害热敏感性以及神经损伤后的机械和热痛相关超敏反应方面的重要作用。在过去的几十年中,用于实验操纵啮齿动物基因组的技术的扩展极大地促进了神经科学领域的发展。虽然引入酶或荧光报告蛋白来标记神经元群体现在已经很常见,但通常不充分考虑潜在的毒性效应。我们通过分析两种缺乏 Kv1.6 钾通道的小鼠模型:一种具有额外的 LacZ 表达,一种没有 LacZ 表达,证明了 Kv1.6 在急性和神经性疼痛状态中的作用。我们表明,LacZ 报告酶会在感觉神经元中引起意外的缺陷,从而影响行为数据结果。总之,我们强调了 Kv1.6 在神经损伤后恢复正常感觉功能中的重要性,并对 LacZ 报告模型的数据进行了仔细的解释。