Suppr超能文献

基于数值方法分析修正构建物理信息神经网络,以解决化学反应器中过程建模问题。

Constructing Physics-Informed Neural Networks with Architecture Based on Analytical Modification of Numerical Methods by Solving the Problem of Modelling Processes in a Chemical Reactor.

机构信息

Department of Higher Mathematics, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., 195251 Saint Petersburg, Russia.

Scientific and Technological Centre (STC) "Mathematical Modelling and Intelligent Control Systems", High School of Cyber-Physical Systems and Control, Peter the Great St. Petersburg State Polytechnic University, 29 Polytechnicheskaya Str., 195251 Saint Petersburg, Russia.

出版信息

Sensors (Basel). 2023 Jan 6;23(2):663. doi: 10.3390/s23020663.

Abstract

A novel type of neural network with an architecture based on physics is proposed. The network structure builds on a body of analytical modifications of classical numerical methods. A feature of the constructed neural networks is defining parameters of the governing equations as trainable parameters. Constructing the network is carried out in three stages. In the first step, a neural network solution to an equation corresponding to a numerical scheme is constructed. It allows for forming an initial low-fidelity neural network solution to the original problem. At the second stage, the network with physics-based architecture (PBA) is further trained to solve the differential equation by minimising the loss function, as is typical in works devoted to physics-informed neural networks (PINNs). In the third stage, the physics-informed neural network with architecture based on physics (PBA-PINN) is trained on high-fidelity sensor data, parameters are identified, or another task of interest is solved. This approach makes it possible to solve insufficiently studied PINN problems: selecting neural network architecture and successfully initialising network weights corresponding to the problem being solved that ensure rapid convergence to the loss function minimum. It is advisable to use the devised PBA-PINNs in the problems of surrogate modelling and modelling real objects with multi-fidelity data. The effectiveness of the approach proposed is demonstrated using the problem of modelling processes in a chemical reactor. Experiments show that subsequent retraining of the initial low-fidelity PBA model based on a few high-accuracy data leads to the achievement of relatively high accuracy.

摘要

提出了一种基于物理架构的新型神经网络。该网络结构建立在对经典数值方法的大量分析修改的基础上。所构建的神经网络的一个特点是将控制方程的参数定义为可训练参数。构建网络分三个阶段进行。在第一步中,构建了与数值方案相对应的方程的神经网络解。这使得可以对原始问题形成初始低保真度的神经网络解。在第二步中,通过最小化损失函数进一步训练具有基于物理架构的网络 (PBA) 来求解微分方程,这是致力于物理信息神经网络 (PINN) 的工作中的典型做法。在第三步中,对基于物理架构的物理信息神经网络 (PBA-PINN) 进行训练,使用高保真度传感器数据,识别参数或解决另一个感兴趣的任务。这种方法使得解决研究不足的 PINN 问题成为可能:选择神经网络架构,并成功初始化对应于正在解决的问题的网络权重,以确保快速收敛到损失函数最小值。在具有多保真度数据的替代模型和真实对象建模问题中,建议使用所设计的 PBA-PINN。使用化学反应器中过程建模的问题来证明所提出方法的有效性。实验表明,基于少数高精度数据对初始低保真 PBA 模型进行后续重新训练可实现相对较高的精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a32/9861223/0147d546525e/sensors-23-00663-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验