Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, MD, USA.
Institute of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russia.
Neural Dev. 2021 Sep 21;16(1):5. doi: 10.1186/s13064-021-00155-z.
While the transcriptional code governing retinal ganglion cell (RGC) type specification begins to be understood, its interplay with neurotrophic signaling is largely unexplored. In mice, the transcription factor Brn3a/Pou4f1 is expressed in most RGCs, and is required for the specification of RGCs with small dendritic arbors. The Glial Derived Neurotrophic Factor (GDNF) receptor Ret is expressed in a subset of RGCs, including some expressing Brn3a, but its role in RGC development is not defined.
Here we use combinatorial genetic experiments using conditional knock-in reporter alleles at the Brn3a and Ret loci, in combination with retina- or Ret specific Cre drivers, to generate complete or mosaic genetic ablations of either Brn3a or Ret in RGCs. We then use sparse labelling to investigate Brn3a and Ret gene dosage effects on RGC dendritic arbor morphology. In addition, we use immunostaining and/or gene expression profiling by RNASeq to identify transcriptional targets relevant for the potential Brn3a-Ret interaction in RGC development.
We find that mosaic gene dosage manipulation of the transcription factor Brn3a/Pou4f1 in neurotrophic receptor Ret heterozygote RGCs results in altered cell fate decisions and/or morphological dendritic defects. Specific RGC types are lost if Brn3a is ablated during embryogenesis and only mildly affected by postnatal Brn3a ablation. Sparse but not complete Brn3a heterozygosity combined with complete Ret heterozygosity has striking effects on RGC type distribution. Brn3a only mildly modulates Ret transcription, while Ret knockouts exhibit slightly skewed Brn3a and Brn3b expression during development that is corrected by adult age. Brn3a loss of function modestly but significantly affects distribution of Ret co-receptors GFRα1-3, and neurotrophin receptors TrkA and TrkC in RGCs.
Based on these observations, we propose that Brn3a and Ret converge onto developmental pathways that control RGC type specification, potentially through a competitive mechanism requiring signaling from the surrounding tissue.
虽然调控视网膜神经节细胞(RGC)类型特化的转录密码开始被理解,但它与神经营养信号的相互作用在很大程度上仍未被探索。在小鼠中,转录因子 Brn3a/Pou4f1 在大多数 RGC 中表达,并且是小树突状分支的 RGC 特化所必需的。胶质衍生神经营养因子(GDNF)受体 Ret 在包括一些表达 Brn3a 的 RGC 亚群中表达,但它在 RGC 发育中的作用尚未确定。
在这里,我们使用组合遗传实验,在 Brn3a 和 Ret 基因座使用条件性敲入报告基因等位基因,结合视网膜或 Ret 特异性 Cre 驱动子,在 RGC 中产生 Brn3a 或 Ret 的完全或镶嵌性遗传缺失。然后,我们使用稀疏标记来研究 Brn3a 和 Ret 基因剂量对 RGC 树突形态的影响。此外,我们使用免疫染色和/或通过 RNASeq 进行基因表达谱分析,以鉴定与 RGC 发育中潜在的 Brn3a-Ret 相互作用相关的转录靶标。
我们发现,在神经营养受体 Ret 杂合的 RGC 中,转录因子 Brn3a/Pou4f1 的镶嵌性基因剂量操作会导致细胞命运决定和/或形态树突缺陷的改变。如果在胚胎发生期间消除 Brn3a,则特定的 RGC 类型会丢失,而在出生后消除 Brn3a 则受到轻度影响。稀疏但不完全的 Brn3a 杂合性与完全的 Ret 杂合性对 RGC 类型分布有显著影响。Brn3a 仅轻度调节 Ret 转录,而 Ret 敲除体在发育过程中表现出轻微偏向的 Brn3a 和 Brn3b 表达,这在成年后得到纠正。Brn3a 功能丧失会适度但显著影响 RGC 中的 Ret 共受体 GFRα1-3 和神经营养素受体 TrkA 和 TrkC 的分布。
基于这些观察结果,我们提出 Brn3a 和 Ret 汇聚到控制 RGC 类型特化的发育途径上,可能通过需要来自周围组织的信号的竞争机制。