Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada.
Sci Rep. 2021 Sep 21;11(1):18757. doi: 10.1038/s41598-021-96723-8.
This article proposes a universal activation function (UAF) that achieves near optimal performance in quantification, classification, and reinforcement learning (RL) problems. For any given problem, the gradient descent algorithms are able to evolve the UAF to a suitable activation function by tuning the UAF's parameters. For the CIFAR-10 classification using the VGG-8 neural network, the UAF converges to the Mish like activation function, which has near optimal performance [Formula: see text] when compared to other activation functions. In the graph convolutional neural network on the CORA dataset, the UAF evolves to the identity function and obtains [Formula: see text]. For the quantification of simulated 9-gas mixtures in 30 dB signal-to-noise ratio (SNR) environments, the UAF converges to the identity function, which has near optimal root mean square error of [Formula: see text]. In the ZINC molecular solubility quantification using graph neural networks, the UAF morphs to a LeakyReLU/Sigmoid hybrid and achieves RMSE=[Formula: see text]. For the BipedalWalker-v2 RL dataset, the UAF achieves the 250 reward in [Formula: see text] epochs with a brand new activation function, which gives the fastest convergence rate among the activation functions.
本文提出了一种通用激活函数(UAF),在量化、分类和强化学习(RL)问题中都能达到近乎最优的性能。对于任何给定的问题,梯度下降算法都能够通过调整 UAF 的参数将 UAF 进化为合适的激活函数。在使用 VGG-8 神经网络的 CIFAR-10 分类任务中,UAF 收敛到 Mish 激活函数,与其他激活函数相比,它具有近乎最优的性能 [公式:见文本]。在 CORA 数据集上的图卷积神经网络中,UAF 演化为恒等函数,得到 [公式:见文本]。在 30dB 信噪比(SNR)环境下模拟的 9 种气体混合物的量化中,UAF 收敛到恒等函数,其均方根误差接近最优,为 [公式:见文本]。在使用图神经网络对 ZINC 分子溶解度进行量化的任务中,UAF 演化为 LeakyReLU/Sigmoid 混合函数,并达到 RMSE=[公式:见文本]。在 BipedalWalker-v2 RL 数据集上,UAF 使用全新的激活函数在 [公式:见文本]个周期内就达到了 250 的奖励,其收敛速度在激活函数中是最快的。