Suppr超能文献

COV-VGX:一种使用X射线图像和迁移学习的自动化新冠病毒检测系统。

COV-VGX: An automated COVID-19 detection system using X-ray images and transfer learning.

作者信息

Saha Prottoy, Sadi Muhammad Sheikh, Aranya O F M Riaz Rahman, Jahan Sadia, Islam Ferdib-Al

机构信息

Khulna University of Engineering & Technology, Department of Computer Science and Engineering, Khulna, Bangladesh.

出版信息

Inform Med Unlocked. 2021;26:100741. doi: 10.1016/j.imu.2021.100741. Epub 2021 Sep 17.

Abstract

Coronavirus (COVID-19) has been one of the most dangerous and acute deadly diseases across the world recently. Researchers are trying to develop automated and feasible COVID-19 detection systems with the help of deep neural networks, machine learning techniques, etc. In this paper, a deep learning-based COVID-19 detection system called COV-VGX is proposed that contributes to detecting coronavirus disease automatically using chest X-ray images. The system introduces two types of classifiers, namely, a multiclass classifier that automatically predicts coronavirus, pneumonia, and normal classes and a binary classifier that predicts coronavirus and pneumonia classes. Using transfer learning, a deep CNN model is proposed to extract distinct and high-level features from X-ray images in collaboration with the pretrained model VGG-16. Despite the limitation of the COVID-19 dataset, the model is evaluated with sufficient COVID-19 images. Extensive experiments for multiclass classifier have achieved 98.91% accuracy, 97.31% precision, 99.50% recall, 98.39% F1-score, while 99.37% accuracy, 98.76% precision, 100% recall, 99.38% F1-score for binary classifier. The proposed system can contribute a lot in diagnosing COVID-19 effectively in the medical field.

摘要

冠状病毒(COVID-19)是近期全球最危险、最严重的致命疾病之一。研究人员正借助深度神经网络、机器学习技术等,试图开发自动化且可行的COVID-19检测系统。本文提出了一种基于深度学习的COVID-19检测系统COV-VGX,该系统有助于利用胸部X光图像自动检测冠状病毒疾病。该系统引入了两种类型的分类器,即自动预测冠状病毒、肺炎和正常类别的多类分类器,以及预测冠状病毒和肺炎类别的二元分类器。利用迁移学习,提出了一种深度卷积神经网络(CNN)模型,与预训练模型VGG-16协作,从X光图像中提取独特的高级特征。尽管COVID-19数据集存在局限性,但该模型使用了足够数量的COVID-19图像进行评估。多类分类器的大量实验取得了98.91%的准确率、97.31%的精确率、99.50%的召回率、98.39%的F1分数,而二元分类器的准确率为99.37%、精确率为98.76%、召回率为100%、F1分数为99.38%。所提出的系统能在医学领域有效诊断COVID-19方面做出很大贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e133/8445760/3c950d586f58/gr1_lrg.jpg

相似文献

1
COV-VGX: An automated COVID-19 detection system using X-ray images and transfer learning.
Inform Med Unlocked. 2021;26:100741. doi: 10.1016/j.imu.2021.100741. Epub 2021 Sep 17.
2
COVID-19 detection in CT and CXR images using deep learning models.
Biogerontology. 2022 Feb;23(1):65-84. doi: 10.1007/s10522-021-09946-7. Epub 2022 Jan 22.
3
Modeling a deep transfer learning framework for the classification of COVID-19 radiology dataset.
PeerJ Comput Sci. 2021 Aug 3;7:e614. doi: 10.7717/peerj-cs.614. eCollection 2021.
4
Automated image classification of chest X-rays of COVID-19 using deep transfer learning.
Results Phys. 2021 Sep;28:104529. doi: 10.1016/j.rinp.2021.104529. Epub 2021 Jul 28.
5
X-ray and CT-scan-based automated detection and classification of covid-19 using convolutional neural networks (CNN).
Biomed Signal Process Control. 2021 Aug;69:102920. doi: 10.1016/j.bspc.2021.102920. Epub 2021 Jun 30.
6
Transfer learning-based ensemble support vector machine model for automated COVID-19 detection using lung computerized tomography scan data.
Med Biol Eng Comput. 2021 Apr;59(4):825-839. doi: 10.1007/s11517-020-02299-2. Epub 2021 Mar 18.
7
Deep learning approaches for COVID-19 detection based on chest X-ray images.
Expert Syst Appl. 2021 Feb;164:114054. doi: 10.1016/j.eswa.2020.114054. Epub 2020 Sep 28.

引用本文的文献

1
An optimized transformer model for efficient detection of thoracic diseases in chest X-rays with multi-scale feature fusion.
PLoS One. 2025 May 7;20(5):e0323239. doi: 10.1371/journal.pone.0323239. eCollection 2025.

本文引用的文献

1
CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved Covid-19 Detection.
IEEE Access. 2020 May 14;8:91916-91923. doi: 10.1109/ACCESS.2020.2994762. eCollection 2020.
2
Viral Pneumonia Screening on Chest X-Rays Using Confidence-Aware Anomaly Detection.
IEEE Trans Med Imaging. 2021 Mar;40(3):879-890. doi: 10.1109/TMI.2020.3040950. Epub 2021 Mar 2.
3
COVIDGR Dataset and COVID-SDNet Methodology for Predicting COVID-19 Based on Chest X-Ray Images.
IEEE J Biomed Health Inform. 2020 Dec;24(12):3595-3605. doi: 10.1109/JBHI.2020.3037127. Epub 2020 Dec 4.
4
Predicting COVID-19 Pneumonia Severity on Chest X-ray With Deep Learning.
Cureus. 2020 Jul 28;12(7):e9448. doi: 10.7759/cureus.9448.
5
Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks.
Chaos Solitons Fractals. 2020 Nov;140:110122. doi: 10.1016/j.chaos.2020.110122. Epub 2020 Jul 13.
7
Automated detection of COVID-19 cases using deep neural networks with X-ray images.
Comput Biol Med. 2020 Jun;121:103792. doi: 10.1016/j.compbiomed.2020.103792. Epub 2020 Apr 28.
8
Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks.
Phys Eng Sci Med. 2020 Jun;43(2):635-640. doi: 10.1007/s13246-020-00865-4. Epub 2020 Apr 3.
9
Real-time RT-PCR in COVID-19 detection: issues affecting the results.
Expert Rev Mol Diagn. 2020 May;20(5):453-454. doi: 10.1080/14737159.2020.1757437. Epub 2020 Apr 22.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验