文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于胸部X光图像的新冠肺炎检测深度学习方法

Deep learning approaches for COVID-19 detection based on chest X-ray images.

作者信息

Ismael Aras M, Şengür Abdulkadir

机构信息

Sulaimani Polytechnic University, College of Informatics, Information Technology Department, Sulaymaniyah, Iraq.

Firat University, Technology Faculty, Electrical-Electronics Engineering Department, Elazig, Turkey.

出版信息

Expert Syst Appl. 2021 Feb;164:114054. doi: 10.1016/j.eswa.2020.114054. Epub 2020 Sep 28.


DOI:10.1016/j.eswa.2020.114054
PMID:33013005
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7521412/
Abstract

COVID-19 is a novel virus that causes infection in both the upper respiratory tract and the lungs. The numbers of cases and deaths have increased on a daily basis on the scale of a global pandemic. Chest X-ray images have proven useful for monitoring various lung diseases and have recently been used to monitor the COVID-19 disease. In this paper, deep-learning-based approaches, namely deep feature extraction, fine-tuning of pretrained convolutional neural networks (CNN), and end-to-end training of a developed CNN model, have been used in order to classify COVID-19 and normal (healthy) chest X-ray images. For deep feature extraction, pretrained deep CNN models (ResNet18, ResNet50, ResNet101, VGG16, and VGG19) were used. For classification of the deep features, the Support Vector Machines (SVM) classifier was used with various kernel functions, namely Linear, Quadratic, Cubic, and Gaussian. The aforementioned pretrained deep CNN models were also used for the fine-tuning procedure. A new CNN model is proposed in this study with end-to-end training. A dataset containing 180 COVID-19 and 200 normal (healthy) chest X-ray images was used in the study's experimentation. Classification accuracy was used as the performance measurement of the study. The experimental works reveal that deep learning shows potential in the detection of COVID-19 based on chest X-ray images. The deep features extracted from the ResNet50 model and SVM classifier with the Linear kernel function produced a 94.7% accuracy score, which was the highest among all the obtained results. The achievement of the fine-tuned ResNet50 model was found to be 92.6%, whilst end-to-end training of the developed CNN model produced a 91.6% result. Various local texture descriptors and SVM classifications were also used for performance comparison with alternative deep approaches; the results of which showed the deep approaches to be quite efficient when compared to the local texture descriptors in the detection of COVID-19 based on chest X-ray images.

摘要

新型冠状病毒肺炎(COVID-19)是一种新型病毒,可导致上呼吸道和肺部感染。在全球大流行的规模下,病例数和死亡数每天都在增加。胸部X光图像已被证明对监测各种肺部疾病有用,最近也被用于监测COVID-19疾病。在本文中,基于深度学习的方法,即深度特征提取、预训练卷积神经网络(CNN)的微调以及所开发CNN模型的端到端训练,已被用于对COVID-19和正常(健康)胸部X光图像进行分类。对于深度特征提取,使用了预训练的深度CNN模型(ResNet18、ResNet50、ResNet101、VGG16和VGG19)。对于深度特征的分类,支持向量机(SVM)分类器与各种核函数一起使用,即线性、二次、三次和高斯核函数。上述预训练的深度CNN模型也用于微调过程。本研究提出了一种通过端到端训练的新CNN模型。在该研究的实验中使用了一个包含180张COVID-19和200张正常(健康)胸部X光图像的数据集。分类准确率被用作该研究的性能指标。实验工作表明,深度学习在基于胸部X光图像检测COVID-19方面显示出潜力。从ResNet50模型提取的深度特征和使用线性核函数的SVM分类器产生了94.7%的准确率得分,这是所有获得的结果中最高的。经微调的ResNet50模型的准确率为92.6%,而所开发CNN模型的端到端训练产生了91.6%的结果。还使用了各种局部纹理描述符和SVM分类与替代深度方法进行性能比较;结果表明,在基于胸部X光图像检测COVID-19时,与局部纹理描述符相比,深度方法相当有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/78286170364f/gr11_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/83fd5c19f078/ga1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/b6352e40316a/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/47ca9f372994/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/b3938a474aa6/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/f16d3fa3a8fc/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/b968ae2b63a7/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/5c2c3df7fb49/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/e96d0c0b7977/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/3d444f1f603a/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/e38eeef13b8e/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/a648dd24b52f/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/78286170364f/gr11_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/83fd5c19f078/ga1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/b6352e40316a/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/47ca9f372994/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/b3938a474aa6/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/f16d3fa3a8fc/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/b968ae2b63a7/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/5c2c3df7fb49/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/e96d0c0b7977/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/3d444f1f603a/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/e38eeef13b8e/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/a648dd24b52f/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/7521412/78286170364f/gr11_lrg.jpg

相似文献

[1]
Deep learning approaches for COVID-19 detection based on chest X-ray images.

Expert Syst Appl. 2021-2

[2]
The investigation of multiresolution approaches for chest X-ray image based COVID-19 detection.

Health Inf Sci Syst. 2020-9-29

[3]
COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images.

Biology (Basel). 2021-11-13

[4]
Computer aid screening of COVID-19 using X-ray and CT scan images: An inner comparison.

J Xray Sci Technol. 2021

[5]
ADOPT: automatic deep learning and optimization-based approach for detection of novel coronavirus COVID-19 disease using X-ray images.

J Biomol Struct Dyn. 2022-8

[6]
Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images.

Comput Math Methods Med. 2021

[7]
A residual network-based framework for COVID-19 detection from CXR images.

Neural Comput Appl. 2023

[8]
Deep convolutional neural networks for COVID-19 automatic diagnosis.

Microsc Res Tech. 2021-11

[9]
Fast and Accurate Detection of COVID-19 Along With 14 Other Chest Pathologies Using a Multi-Level Classification: Algorithm Development and Validation Study.

J Med Internet Res. 2021-2-10

[10]
Deep learning based detection of COVID-19 from chest X-ray images.

Multimed Tools Appl. 2021

引用本文的文献

[1]
Multi-modal image classification of COVID-19 cases using computed tomography and X-rays scans.

Intell Syst Appl. 2023-2

[2]
A novel DCNN-ELM hybrid framework for face mask detection.

Intell Syst Appl. 2023-2

[3]
Deep viewing for the identification of Covid-19 infection status from chest X-Ray image using CNN based architecture.

Intell Syst Appl. 2022-11

[4]
Novel deep learning approach to model and predict the spread of COVID-19.

Intell Syst Appl. 2022-5

[5]
AFCM-LSMA: New intelligent model based on Lévy slime mould algorithm and adaptive fuzzy C-means for identification of COVID-19 infection from chest X-ray images.

Adv Eng Inform. 2021-8

[6]
Detection of cotton crops diseases using customized deep learning model.

Sci Rep. 2025-3-28

[7]
The dietary patterns of water deer recently rediscovered in Northeast China exhibit remarkable similarities to those observed in other regions.

Sci Rep. 2025-3-18

[8]
A two stage blood cell detection and classification algorithm based on improved YOLOv7 and EfficientNetv2.

Sci Rep. 2025-3-11

[9]
Challenges issues and future recommendations of deep learning techniques for SARS-CoV-2 detection utilising X-ray and CT images: a comprehensive review.

PeerJ Comput Sci. 2024-12-24

[10]
Artificial Intelligence Methods in Infection Biology Research.

Methods Mol Biol. 2025

本文引用的文献

[1]
COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches.

Comput Biol Med. 2020-5-6

[2]
Automated detection of COVID-19 cases using deep neural networks with X-ray images.

Comput Biol Med. 2020-4-28

[3]
COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images.

Med Hypotheses. 2020-4-23

[4]
Multi-resolution convolutional networks for chest X-ray radiograph based lung nodule detection.

Artif Intell Med. 2019-10-28

[5]
An automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networks.

Comput Methods Programs Biomed. 2019-6-6

[6]
Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists.

PLoS Med. 2018-11-20

[7]
Transfer learning based histopathologic image classification for breast cancer detection.

Health Inf Sci Syst. 2018-9-28

[8]
Small lung nodules detection based on local variance analysis and probabilistic neural network.

Comput Methods Programs Biomed. 2018-4-28

[9]
Quaternionic Local Ranking Binary Pattern: A Local Descriptor of Color Images.

IEEE Trans Image Process. 2015-12-9

[10]
CENTRIST: A Visual Descriptor for Scene Categorization.

IEEE Trans Pattern Anal Mach Intell. 2010-12-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索