Suppr超能文献

基于置信度感知异常检测的胸部 X 射线病毒性肺炎筛查。

Viral Pneumonia Screening on Chest X-Rays Using Confidence-Aware Anomaly Detection.

出版信息

IEEE Trans Med Imaging. 2021 Mar;40(3):879-890. doi: 10.1109/TMI.2020.3040950. Epub 2021 Mar 2.

Abstract

Clusters of viral pneumonia occurrences over a short period may be a harbinger of an outbreak or pandemic. Rapid and accurate detection of viral pneumonia using chest X-rays can be of significant value for large-scale screening and epidemic prevention, particularly when other more sophisticated imaging modalities are not readily accessible. However, the emergence of novel mutated viruses causes a substantial dataset shift, which can greatly limit the performance of classification-based approaches. In this paper, we formulate the task of differentiating viral pneumonia from non-viral pneumonia and healthy controls into a one-class classification-based anomaly detection problem. We therefore propose the confidence-aware anomaly detection (CAAD) model, which consists of a shared feature extractor, an anomaly detection module, and a confidence prediction module. If the anomaly score produced by the anomaly detection module is large enough, or the confidence score estimated by the confidence prediction module is small enough, the input will be accepted as an anomaly case (i.e., viral pneumonia). The major advantage of our approach over binary classification is that we avoid modeling individual viral pneumonia classes explicitly and treat all known viral pneumonia cases as anomalies to improve the one-class model. The proposed model outperforms binary classification models on the clinical X-VIRAL dataset that contains 5,977 viral pneumonia (no COVID-19) cases, 37,393 non-viral pneumonia or healthy cases. Moreover, when directly testing on the X-COVID dataset that contains 106 COVID-19 cases and 107 normal controls without any fine-tuning, our model achieves an AUC of 83.61% and sensitivity of 71.70%, which is comparable to the performance of radiologists reported in the literature.

摘要

短期内出现的病毒性肺炎聚集可能是暴发或大流行的先兆。使用胸部 X 光片快速准确地检测病毒性肺炎,对于大规模筛查和疫情防控具有重要意义,尤其是在其他更复杂的成像方式不易获得的情况下。然而,新型突变病毒的出现会导致大量数据偏移,这极大地限制了基于分类的方法的性能。在本文中,我们将区分病毒性肺炎与非病毒性肺炎和健康对照的任务转化为基于一类分类的异常检测问题。因此,我们提出了置信感知异常检测(CAAD)模型,该模型由共享特征提取器、异常检测模块和置信预测模块组成。如果异常检测模块产生的异常得分足够大,或者置信预测模块估计的置信得分足够小,那么输入将被视为异常情况(即病毒性肺炎)。与二进制分类相比,我们的方法的主要优势在于,我们避免显式地对个体病毒性肺炎类别进行建模,并将所有已知的病毒性肺炎病例视为异常,以改进一类模型。在包含 5977 例病毒性肺炎(无 COVID-19)、37393 例非病毒性肺炎或健康病例的临床 X-VIRAL 数据集上,所提出的模型优于二进制分类模型。此外,当直接在包含 106 例 COVID-19 病例和 107 例正常对照的 X-COVID 数据集上进行测试,而无需进行任何微调时,我们的模型的 AUC 为 83.61%,敏感性为 71.70%,与文献中报道的放射科医生的表现相当。

相似文献

引用本文的文献

10
Pneumonia classification: A limited data approach for global understanding.肺炎分类:一种用于全球理解的有限数据方法。
Heliyon. 2024 Feb 14;10(4):e26177. doi: 10.1016/j.heliyon.2024.e26177. eCollection 2024 Feb 29.

本文引用的文献

4
Deep Mining External Imperfect Data for Chest X-Ray Disease Screening.深度挖掘胸部X光疾病筛查的外部不完美数据
IEEE Trans Med Imaging. 2020 Nov;39(11):3583-3594. doi: 10.1109/TMI.2020.3000949. Epub 2020 Oct 28.
7
Interpreting a covid-19 test result.解读新冠病毒检测结果。
BMJ. 2020 May 12;369:m1808. doi: 10.1136/bmj.m1808.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验