Suppr超能文献

在马来西亚登嘉楼州开发气象温度和湿度预测的机器学习算法。

Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia.

机构信息

College of Technical Engineering, Islamic University, Najaf, Iraq.

College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Kajang, Selangor, Malaysia.

出版信息

Sci Rep. 2021 Sep 23;11(1):18935. doi: 10.1038/s41598-021-96872-w.

Abstract

Accurately predicting meteorological parameters such as air temperature and humidity plays a crucial role in air quality management. This study proposes different machine learning algorithms: Gradient Boosting Tree (G.B.T.), Random forest (R.F.), Linear regression (LR) and different artificial neural network (ANN) architectures (multi-layered perceptron, radial basis function) for prediction of such as air temperature (T) and relative humidity (Rh). Daily data over 24 years for Kula Terengganu station were obtained from the Malaysia Meteorological Department. Results showed that MLP-NN performs well among the others in predicting daily T and Rh with R of 0.7132 and 0.633, respectively. However, in monthly prediction T also MLP-NN model provided closer standards deviation to actual value and can be used to predict monthly T with R 0.8462. Whereas in prediction monthly Rh, the RBF-NN model's efficiency was higher than other models with R of 0.7113. To validate the performance of the trained both artificial neural network (ANN) architectures MLP-NN and RBF-NN, both were applied to an unseen data set from observation data in the region. The results indicated that on either architecture of ANN, there is good potential to predict daily and monthly T and Rh values with an acceptable range of accuracy.

摘要

准确预测气温和湿度等气象参数在空气质量管理中起着至关重要的作用。本研究提出了不同的机器学习算法:梯度提升树(G.B.T.)、随机森林(R.F.)、线性回归(LR)和不同的人工神经网络(ANN)架构(多层感知器、径向基函数),用于预测气温(T)和相对湿度(Rh)等气象参数。从马来西亚气象局获得了瓜拉丁加奴站 24 年的每日数据。结果表明,在预测日气温和相对湿度方面,MLP-NN 在其他模型中表现最好,其 R 值分别为 0.7132 和 0.633。然而,在月预测中,MLP-NN 模型的标准偏差更接近实际值,因此可以用于预测月气温,R 值为 0.8462。而在预测月相对湿度方面,RBF-NN 模型的效率高于其他模型,R 值为 0.7113。为了验证训练的两种人工神经网络(ANN)架构 MLP-NN 和 RBF-NN 的性能,将它们应用于该地区观测数据中的未见过数据集。结果表明,在 ANN 的两种架构上,都有很好的潜力来预测日和月的 T 和 Rh 值,具有可接受的精度范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3585/8460791/9d9f4d10b335/41598_2021_96872_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验