Ogrodnik Piotr, Grochot Krzysztof, Karwacki Łukasz, Kanak Jarosław, Prokop Michał, Chȩciński Jakub, Skowroński Witold, Ziȩtek Sławomir, Stobiecki Tomasz
Institute of Electronics, AGH University of Science and Technology, 30-059 Kraków, Poland.
Faculty of Physics, Warsaw University of Technology, 00-662 Warsaw, Poland.
ACS Appl Mater Interfaces. 2021 Oct 6;13(39):47019-47032. doi: 10.1021/acsami.1c11675. Epub 2021 Sep 24.
The spin-orbit torque, a torque induced by a charge current flowing through the heavy-metal-conducting layer with strong spin-orbit interactions, provides an efficient way to control the magnetization direction in heavy-metal/ferromagnet nanostructures, required for applications in the emergent magnetic technologies like random access memories, high-frequency nano-oscillators, or bioinspired neuromorphic computations. We study the interface properties, magnetization dynamics, magnetostatic features, and spin-orbit interactions within the multilayer system Ti(2)/Co(1)/Pt(0-4)/Co(1)/MgO(2)/Ti(2) (thicknesses in nanometers) patterned by optical lithography on micrometer-sized bars. In the investigated devices, Pt is used as a source of the spin current and as a nonmagnetic spacer with variable thickness, which enables the magnitude of the interlayer ferromagnetic exchange coupling to be effectively tuned. We also find the Pt thickness-dependent changes in magnetic anisotropies, magnetoresistances, effective Hall angles, and, eventually, spin-orbit torque fields at interfaces. The experimental findings are supported by the relevant interface structure-related simulations, micromagnetic, macrospin, as well as the spin drift-diffusion models. Finally, the contribution of the spin-orbital Edelstein-Rashba interfacial fields is also briefly discussed in the analysis.
自旋轨道转矩是由流经具有强自旋轨道相互作用的重金属导电层的电荷电流所感应产生的一种转矩,它为控制重金属/铁磁体纳米结构中的磁化方向提供了一种有效方法,这在诸如随机存取存储器、高频纳米振荡器或受生物启发的神经形态计算等新兴磁性技术的应用中是必需的。我们研究了通过光学光刻在微米尺寸的条形上制备的多层系统Ti(2)/Co(1)/Pt(0 - 4)/Co(1)/MgO(2)/Ti(2)(厚度以纳米为单位)中的界面特性、磁化动力学、静磁特性和自旋轨道相互作用。在所研究的器件中,Pt用作自旋电流源和具有可变厚度的非磁性间隔层,这使得层间铁磁交换耦合的大小能够得到有效调节。我们还发现了磁性各向异性、磁阻、有效霍尔角以及最终界面处自旋轨道转矩场随Pt厚度的变化。相关的与界面结构有关的模拟、微磁学、宏观自旋以及自旋漂移 - 扩散模型支持了实验结果。最后,在分析中还简要讨论了自旋轨道埃德尔斯坦 - 拉什巴界面场的贡献。