Suppr超能文献

为医疗保健专业人员提供无需编码的人工智能平台以进行模型开发,这是病理学的一个实际演示。

Empowering healthcare professionals with no-code artificial intelligence platforms for model development, a practical demonstration for pathology.

作者信息

Hoseini Sayed Shahabuddin, Dewar Rajan

机构信息

Department of Pathology, Westchester Medical Center, 100 Woods Rd, Valhalla, NY 10595, USA.

出版信息

Discoveries (Craiova). 2024 Mar 30;12(1):e182. doi: 10.15190/d.2024.1. eCollection 2024 Jan-Mar.

Abstract

Artificial intelligence (AI) and machine learning based applications are thought to impact the practice of healthcare by transforming diagnostic patient management approaches. However, domain knowledge, clinical and coding expertise are likely the biggest challenge and a substantial barrier in developing practical AI models. Most informatics and AI experts are not familiar with the nuances in medicine, and most doctors are not efficient coders. To address this barrier, a few "no-code" AI platforms are emerging. They enable medical professionals to create AI models without coding skills. This study examines Teachable Machine™, a no-code AI platform, to classify white blood cells into the five common WBC types. Training data from publicly available datasets were used, and model accuracy was improved by fine-tuning hyperparameters. Sensitivity, precision, and F1 score calculations evaluated model performance, and independent datasets were employed for testing. Several factors that influence the performance of the model were tested. The model achieved 97% accuracy in classifying white blood cells, with high sensitivity and precision. Independent validation supported its potential for further development. This is the first study that demonstrates the value of a free no-code algorithm based AI platforms use in hematopathology using authentic datasets for training. It opens an opportunity for the healthcare professionals to get hands-on experience with AI and to create practical AI models without coding expertise.

摘要

基于人工智能(AI)和机器学习的应用程序被认为会通过改变患者诊断管理方法来影响医疗实践。然而,领域知识、临床和编码专业知识可能是开发实用人工智能模型时最大的挑战和重大障碍。大多数信息学和人工智能专家并不熟悉医学的细微差别,而大多数医生也不是高效的编码人员。为了解决这一障碍,一些“无代码”人工智能平台正在兴起。它们使医学专业人员能够在不具备编码技能的情况下创建人工智能模型。本研究考察了一个无代码人工智能平台Teachable Machine™,用于将白细胞分类为五种常见的白细胞类型。使用了来自公开可用数据集的训练数据,并通过微调超参数提高了模型的准确性。通过计算灵敏度、精确率和F1分数来评估模型性能,并使用独立数据集进行测试。测试了几个影响模型性能的因素。该模型在白细胞分类方面达到了97%的准确率,具有较高的灵敏度和精确率。独立验证支持了其进一步开发的潜力。这是第一项使用真实数据集进行训练,证明基于免费无代码算法的人工智能平台在血液病理学中的价值的研究。它为医疗专业人员提供了一个亲身体验人工智能并在没有编码专业知识的情况下创建实用人工智能模型的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d698/11682784/368394d69d1a/discoveries-12-182-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验