Suppr超能文献

算法招聘中的审计系统化

Systematizing Audit in Algorithmic Recruitment.

作者信息

Kazim Emre, Koshiyama Adriano Soares, Hilliard Airlie, Polle Roseline

机构信息

Department of Computer Science, University College London, Gower St, London WC1E 6EA, UK.

Institute of Management Studies, Goldsmiths, University of London, New Cross, London SE14 6NW, UK.

出版信息

J Intell. 2021 Sep 17;9(3):46. doi: 10.3390/jintelligence9030046.

Abstract

Business psychologists study and assess relevant individual differences, such as intelligence and personality, in the context of work. Such studies have informed the development of artificial intelligence systems (AI) designed to measure individual differences. This has been capitalized on by companies who have developed AI-driven recruitment solutions that include aggregation of appropriate candidates (), interviewing through a chatbot (), video interview assessment (), and CV-analysis (), as well as estimation of psychometric characteristics through image-() and game-based assessments () and video interviews ). However, driven by concern that such high-impact technology must be used responsibly due to the potential for unfair hiring to result from the algorithms used by these tools, there is an active effort towards proving mechanisms of governance for such automation. In this article, we apply a systematic algorithm audit framework in the context of the ethically critical industry of algorithmic recruitment systems, exploring how audit assessments on AI-driven systems can be used to assure that such systems are being responsibly deployed in a fair and well-governed manner. We outline sources of risk for the use of algorithmic hiring tools, suggest the most appropriate opportunities for audits to take place, recommend ways to measure bias in algorithms, and discuss the transparency of algorithms.

摘要

商业心理学家在工作背景下研究和评估相关的个体差异,如智力和个性。此类研究为旨在测量个体差异的人工智能系统(AI)的发展提供了参考。这已被一些公司利用,它们开发了人工智能驱动的招聘解决方案,包括筛选合适的候选人、通过聊天机器人进行面试、视频面试评估、简历分析,以及通过基于图像和游戏的评估及视频面试来估计心理测量特征。然而,由于担心此类具有重大影响的技术因其所使用的算法可能导致不公平招聘,必须负责任地使用,因此人们正在积极努力为这种自动化建立治理机制。在本文中,我们在算法招聘系统这一具有伦理重要性的行业背景下应用一种系统的算法审计框架,探讨对人工智能驱动系统的审计评估如何能够用于确保此类系统以公平且管理良好的方式得到负责任的部署。我们概述了使用算法招聘工具的风险来源,提出了进行审计的最合适时机,推荐了测量算法偏差的方法,并讨论了算法的透明度。

相似文献

1
Systematizing Audit in Algorithmic Recruitment.算法招聘中的审计系统化
J Intell. 2021 Sep 17;9(3):46. doi: 10.3390/jintelligence9030046.
9
Ethical machines: The human-centric use of artificial intelligence.合乎伦理的机器:以人类为中心的人工智能应用
iScience. 2021 Mar 3;24(3):102249. doi: 10.1016/j.isci.2021.102249. eCollection 2021 Mar 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验