Ashdot Aviv, Kattan Mordechai, Kitayev Anna, Tal-Gutelmacher Ervin, Amel Alina, Page Miles
Hydrolite Ltd., 2 Hatochen St., Caesaria 38900, Israel.
Department of Chemistry, Bar Ilan Institute of Technology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan 52900, Israel.
Membranes (Basel). 2021 Sep 3;11(9):686. doi: 10.3390/membranes11090686.
Production of hydrocarbon-based, alkaline exchange, membrane-electrode assemblies (MEA's) for fuel cells and electrolyzers is examined via catalyst-coated membrane (CCM) and gas-diffusion electrode (GDE) fabrication routes. The inability effectively to hot-press hydrocarbon-based ion-exchange polymers (ionomers) risks performance limitations due to poor interfacial contact, especially between GDE and membrane. The addition of an ionomeric interlayer is shown greatly to improve the intimacy of contact between GDE and membrane, as determined by ex situ through-plane MEA impedance measurements, indicated by a strong decrease in the frequency of the high-frequency zero phase angle of the complex impedance, and confirmed in situ with device performance tests. The best interfacial contact is achieved with CCM's, with the contact impedance decreasing, and device performance increasing, in the order GDE >> GDE+Interlayer > CCM. The GDE+interlayer fabrication approach is further examined with respect to hydrogen crossover and alkaline membrane electrolyzer cell performance. An interlayer strongly reduces the rate of hydrogen crossover without strongly decreasing electrolyzer performance, while crosslinking the ionomeric layer further reduces the crossover rate though also limiting device performance. The approach can be applied and built upon to improve the design and production of alkaline, and more generally, hydrocarbon-based MEA's and exchange membrane devices.
通过催化剂涂覆膜(CCM)和气体扩散电极(GDE)制造路线,研究了用于燃料电池和电解槽的基于烃的碱性交换膜电极组件(MEA)的生产。由于界面接触不良,尤其是GDE与膜之间的接触不良,无法有效地热压基于烃的离子交换聚合物(离聚物)可能会导致性能受限。通过异位平面MEA阻抗测量确定,添加离聚物中间层可显著改善GDE与膜之间的接触紧密性,这表现为复阻抗高频零相位角频率的大幅下降,并通过器件性能测试得到原位证实。CCM实现了最佳的界面接触,接触阻抗按GDE >> GDE + 中间层 > CCM的顺序降低,器件性能提高。针对氢渗透和碱性膜电解槽电池性能,进一步研究了GDE + 中间层制造方法。中间层可大幅降低氢渗透速率,而不会显著降低电解槽性能,同时交联离聚物层虽会限制器件性能,但可进一步降低渗透速率。该方法可应用并在此基础上改进碱性以及更一般的基于烃的MEA和交换膜器件的设计与生产。