Clemens Auston L, Jayathilake Buddhinie S, Karnes John J, Schwartz Johanna J, Baker Sarah E, Duoss Eric B, Oakdale James S
Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
Polymers (Basel). 2023 Mar 20;15(6):1534. doi: 10.3390/polym15061534.
Alkaline anion exchange membranes (AAEMs) are an enabling component for next-generation electrochemical devices, including alkaline fuel cells, water and CO electrolyzers, and flow batteries. While commercial systems, notably fuel cells, have traditionally relied on proton-exchange membranes, hydroxide-ion conducting AAEMs hold promise as a method to reduce cost-per-device by enabling the use of non-platinum group electrodes and cell components. AAEMs have undergone significant material development over the past two decades; however, challenges remain in the areas of durability, water management, high temperature performance, and selectivity. In this review, we survey crosslinking as a tool capable of tuning AAEM properties. While crosslinking implementations vary, they generally result in reduced water uptake and increased transport selectivity and alkaline stability. We survey synthetic methodologies for incorporating crosslinks during AAEM fabrication and highlight necessary precautions for each approach.
碱性阴离子交换膜(AAEMs)是下一代电化学装置的关键组成部分,这些装置包括碱性燃料电池、水电解槽和CO电解槽以及液流电池。虽然传统上商业系统,尤其是燃料电池,依赖于质子交换膜,但氢氧根离子传导的AAEMs有望通过使用非铂族电极和电池组件来降低每台设备的成本。在过去二十年中,AAEMs经历了重大的材料开发;然而,在耐久性、水管理、高温性能和选择性等方面仍然存在挑战。在这篇综述中,我们考察了交联作为一种能够调节AAEMs性能的工具。虽然交联的实施方式各不相同,但它们通常会导致吸水率降低、传输选择性提高和碱性稳定性增强。我们考察了在AAEMs制造过程中引入交联的合成方法,并强调了每种方法所需的注意事项。