Firfilionis Dimitrios, Hutchings Frances, Tamadoni Reza, Walsh Darren, Turnbull Mark, Escobedo-Cousin Enrique, Bailey Richard G, Gausden Johannes, Patel Aaliyah, Haci Dorian, Liu Yan, LeBeau Fiona E N, Trevelyan Andrew, Constandinou Timothy G, O'Neill Anthony, Kaiser Marcus, Degenaar Patrick, Jackson Andrew
Neuroprosthesis Lab, School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom.
Digital Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
Front Neurosci. 2021 Sep 10;15:718311. doi: 10.3389/fnins.2021.718311. eCollection 2021.
Neuromodulation is an established treatment for numerous neurological conditions, but to expand the therapeutic scope there is a need to improve the spatial, temporal and cell-type specificity of stimulation. Optogenetics is a promising area of current research, enabling optical stimulation of genetically-defined cell types without interfering with concurrent electrical recording for closed-loop control of neural activity. We are developing an open-source system to provide a platform for closed-loop optogenetic neuromodulation, incorporating custom integrated circuitry for recording and stimulation, real-time closed-loop algorithms running on a microcontroller and experimental control via a PC interface. We include commercial components to validate performance, with the ultimate aim of translating this approach to humans. In the meantime our system is flexible and expandable for use in a variety of preclinical neuroscientific applications. The platform consists of a Controlling Abnormal Network Dynamics using Optogenetics (CANDO) Control System (CS) that interfaces with up to four CANDO headstages responsible for electrical recording and optical stimulation through custom CANDO LED optrodes. Control of the hardware, inbuilt algorithms and data acquisition is enabled via the CANDO GUI (Graphical User Interface). Here we describe the design and implementation of this system, and demonstrate how it can be used to modulate neuronal oscillations and .
神经调节是治疗多种神经系统疾病的既定方法,但为了扩大治疗范围,需要提高刺激的空间、时间和细胞类型特异性。光遗传学是当前一个很有前景的研究领域,它能够对基因定义的细胞类型进行光刺激,而不会干扰同时进行的电记录,以实现对神经活动的闭环控制。我们正在开发一个开源系统,为闭环光遗传学神经调节提供一个平台,该系统集成了用于记录和刺激的定制集成电路、在微控制器上运行的实时闭环算法以及通过PC接口进行实验控制。我们使用商业组件来验证性能,最终目标是将这种方法应用于人类。与此同时,我们的系统具有灵活性和可扩展性,可用于各种临床前神经科学应用。该平台由一个使用光遗传学控制异常网络动力学(CANDO)控制系统(CS)组成,该系统最多可与四个CANDO前置放大器接口,这些前置放大器通过定制的CANDO LED光电极负责电记录和光刺激。通过CANDO GUI(图形用户界面)可以对硬件、内置算法和数据采集进行控制。在这里,我们描述了该系统的设计和实现,并展示了它如何用于调节神经元振荡以及……