Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
Department of Neurobiology, Northwestern University, Evanston, IL, USA.
Nat Neurosci. 2021 Jul;24(7):1035-1045. doi: 10.1038/s41593-021-00849-x. Epub 2021 May 10.
Advanced technologies for controlled delivery of light to targeted locations in biological tissues are essential to neuroscience research that applies optogenetics in animal models. Fully implantable, miniaturized devices with wireless control and power-harvesting strategies offer an appealing set of attributes in this context, particularly for studies that are incompatible with conventional fiber-optic approaches or battery-powered head stages. Limited programmable control and narrow options in illumination profiles constrain the use of existing devices. The results reported here overcome these drawbacks via two platforms, both with real-time user programmability over multiple independent light sources, in head-mounted and back-mounted designs. Engineering studies of the optoelectronic and thermal properties of these systems define their capabilities and key design considerations. Neuroscience applications demonstrate that induction of interbrain neuronal synchrony in the medial prefrontal cortex shapes social interaction within groups of mice, highlighting the power of real-time subject-specific programmability of the wireless optogenetic platforms introduced here.
用于将光精确投送到生物组织中目标位置的先进技术,对于在动物模型中应用光遗传学的神经科学研究至关重要。在这种情况下,完全可植入、小型化、具有无线控制和能量收集策略的设备提供了一组吸引人的属性,特别是对于那些与传统光纤方法或电池供电头级不兼容的研究。现有的设备在可编程控制方面存在限制,并且照明模式的选择范围较窄。本文报道的结果通过两个平台克服了这些缺点,这两个平台都具有针对多个独立光源的实时用户可编程性,设计有头戴式和背带式两种。对这些系统的光电和热性能的工程研究定义了它们的能力和关键设计考虑因素。神经科学应用表明,诱导内侧前额叶皮层中脑间神经元的同步性会影响小鼠群体内部的社会互动,突出了这里介绍的无线光遗传学平台的实时、针对特定主体的可编程性的强大功能。