Suppr超能文献

分子桥介导的超低功耗气体传感。

Molecular bridge-mediated ultralow-power gas sensing.

作者信息

Banerjee Aishwaryadev, Khan Shakir-Ul Haque, Broadbent Samuel, Bulbul Ashrafuzzaman, Kim Kyeong Heon, Noh Seungbeom, Looper R, Mastrangelo C H, Kim H

机构信息

Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112 USA.

Department of Chemistry, University of Utah, Salt Lake City, UT 84112 USA.

出版信息

Microsyst Nanoeng. 2021 Mar 29;7:27. doi: 10.1038/s41378-021-00252-3. eCollection 2021.

Abstract

We report the electrical detection of captured gases through measurement of the quantum tunneling characteristics of gas-mediated molecular junctions formed across nanogaps. The gas-sensing nanogap device consists of a pair of vertically stacked gold electrodes separated by an insulating 6 nm spacer (~1.5 nm of sputtered α-Si and ~4.5 nm ALD SiO), which is notched ~10 nm into the stack between the gold electrodes. The exposed gold surface is functionalized with a self-assembled monolayer (SAM) of conjugated thiol linker molecules. When the device is exposed to a target gas (1,5-diaminopentane), the SAM layer electrostatically captures the target gas molecules, forming a molecular bridge across the nanogap. The gas capture lowers the barrier potential for electron tunneling across the notched edge region, from ~5 eV to ~0.9 eV and establishes additional conducting paths for charge transport between the gold electrodes, leading to a substantial decrease in junction resistance. We demonstrated an output resistance change of >10 times upon exposure to 80 ppm diamine target gas as well as ultralow standby power consumption of <15 pW, confirming electron tunneling through molecular bridges for ultralow-power gas sensing.

摘要

我们通过测量跨越纳米间隙形成的气体介导分子结的量子隧穿特性,报告了对捕获气体的电学检测。气体传感纳米间隙器件由一对垂直堆叠的金电极组成,中间隔着一个6纳米的绝缘间隔层(约1.5纳米的溅射α-Si和约4.5纳米的ALD SiO),该间隔层在金电极之间的堆叠中刻有一个约10纳米的缺口。暴露的金表面用共轭硫醇连接分子的自组装单分子层(SAM)进行功能化。当器件暴露于目标气体(1,5-二氨基戊烷)时,SAM层通过静电捕获目标气体分子,在纳米间隙上形成分子桥。气体捕获降低了电子隧穿穿过缺口边缘区域的势垒,从约5电子伏特降至约0.9电子伏特,并为金电极之间的电荷传输建立了额外的导电路径,导致结电阻大幅降低。我们证明,在暴露于80 ppm二胺目标气体时,输出电阻变化超过10倍,并且待机功耗超低,小于15皮瓦,这证实了通过分子桥进行电子隧穿可实现超低功耗气体传感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b42/8433217/0ba1ca602ad3/41378_2021_252_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验