Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, People's Republic of China.
Hepatology. 2022 Mar;75(3):567-583. doi: 10.1002/hep.32173. Epub 2021 Dec 15.
Alagille Syndrome (ALGS) is a congenital disorder caused by mutations in the Notch ligand gene JAGGED1, leading to neonatal loss of intrahepatic duct (IHD) cells and cholestasis. Cholestasis can resolve in certain patients with ALGS, suggesting regeneration of IHD cells. However, the mechanisms driving IHD cell regeneration following Jagged loss remains unclear. Here, we show that cholestasis due to developmental loss of IHD cells can be consistently phenocopied in zebrafish with compound jagged1b and jagged2b mutations or knockdown.
Leveraging the transience of jagged knockdown in juvenile zebrafish, we find that resumption of Jagged expression leads to robust regeneration of IHD cells through a Notch-dependent mechanism. Combining multiple lineage tracing strategies with whole-liver three-dimensional imaging, we demonstrate that the extrahepatic duct (EHD) is the primary source of multipotent progenitors that contribute to the regeneration, but not to the development, of IHD cells. Hepatocyte-to-IHD cell transdifferentiation is possible but rarely detected. Progenitors in the EHD proliferate and migrate into the liver with Notch signaling loss and differentiate into IHD cells if Notch signaling increases. Tissue-specific mosaic analysis with an inducible dominant-negative Fgf receptor suggests that Fgf signaling from the surrounding mesenchymal cells maintains this extrahepatic niche by directly preventing premature differentiation and allocation of EHD progenitors to the liver. Indeed, transcriptional profiling and functional analysis of adult mouse EHD organoids uncover their distinct differentiation and proliferative potential relative to IHD organoids.
Our data show that IHD cells regenerate upon resumption of Jagged/Notch signaling, from multipotent progenitors originating from an Fgf-dependent extrahepatic stem cell niche. We posit that if Jagged/Notch signaling is augmented, through normal stochastic variation, gene therapy, or a Notch agonist, regeneration of IHD cells in patients with ALGS may be enhanced.
Alagille 综合征(ALGS)是一种由 Notch 配体基因 JAGGED1 突变引起的先天性疾病,导致新生儿肝内胆管(IHD)细胞丢失和胆汁淤积。在某些 ALGS 患者中,胆汁淤积可以自行缓解,提示 IHD 细胞再生。然而,Jagged 缺失后导致 IHD 细胞再生的机制尚不清楚。在这里,我们显示在斑马鱼中,由于 IHD 细胞的发育性缺失导致的胆汁淤积,可以通过 Jagged1b 和 Jagged2b 复合突变或敲低来一致地模拟。
利用幼年斑马鱼 Jagged 敲低的短暂性,我们发现 Jagged 表达的恢复通过 Notch 依赖性机制导致 IHD 细胞的强烈再生。我们结合了多种谱系追踪策略和全肝三维成像,证明了肝外胆管(EHD)是多能祖细胞的主要来源,这些祖细胞有助于 IHD 细胞的再生,但不是发育。肝细胞向 IHD 细胞的转分化是可能的,但很少被检测到。EHD 中的祖细胞在 Notch 信号丢失时增殖并迁移到肝脏,并在 Notch 信号增加时分化为 IHD 细胞。用诱导型显性负性 Fgf 受体进行组织特异性嵌合体分析表明,周围间质细胞的 Fgf 信号通过直接阻止 EHD 祖细胞的过早分化和向肝脏的分配,维持这个肝外小生境。事实上,对成年小鼠 EHD 类器官的转录组分析和功能分析揭示了它们相对于 IHD 类器官的独特分化和增殖潜力。
我们的数据表明,Jagged/Notch 信号的恢复会导致 IHD 细胞再生,来源于 Fgf 依赖性肝外干细胞小生境的多能祖细胞。我们假设,如果 Jagged/Notch 信号通过正常的随机变异、基因治疗或 Notch 激动剂增强,ALGS 患者的 IHD 细胞再生可能会增强。