Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Radiology Department, Boston, MA, USA.
Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK.
Neuroimage. 2021 Dec 1;244:118610. doi: 10.1016/j.neuroimage.2021.118610. Epub 2021 Sep 25.
A tool was developed to automatically segment several subcortical limbic structures (nucleus accumbens, basal forebrain, septal nuclei, hypothalamus without mammillary bodies, the mammillary bodies, and fornix) using only a T1-weighted MRI as input. This tool fills an unmet need as there are few, if any, publicly available tools to segment these clinically relevant structures. A U-Net with spatial, intensity, contrast, and noise augmentation was trained using 39 manually labeled MRI data sets. In general, the Dice scores, true positive rates, false discovery rates, and manual-automatic volume correlation were very good relative to comparable tools for other structures. A diverse data set of 698 subjects were segmented using the tool; evaluation of the resulting labelings showed that the tool failed in less than 1% of cases. Test-retest reliability of the tool was excellent. The automatically segmented volume of all structures except mammillary bodies showed effectiveness at detecting either clinical AD effects, age effects, or both. This tool will be publicly released with FreeSurfer (surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic). Together with the other cortical and subcortical limbic segmentations, this tool will allow FreeSurfer to provide a comprehensive view of the limbic system in an automated way.
开发了一种工具,仅使用 T1 加权 MRI 作为输入,即可自动分割几个皮质下边缘结构(伏隔核、基底前脑、隔核、无乳头体的下丘脑、乳头体和穹窿)。该工具填补了未满足的需求,因为几乎没有(如果有的话)公开可用的工具来分割这些与临床相关的结构。使用 39 个手动标记的 MRI 数据集训练了具有空间、强度、对比度和噪声增强的 U-Net。一般来说,与其他结构的可比工具相比,Dice 分数、真阳性率、假发现率和手动-自动体积相关性非常好。使用该工具对 698 名受试者的数据集进行了分割;对生成的标签的评估表明,该工具在不到 1%的情况下失败。该工具的测试-重测可靠性非常出色。除了乳头体之外的所有结构的自动分割体积都能有效地检测到临床 AD 效应、年龄效应或两者兼有。这个工具将与 FreeSurfer(surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic)一起公开发布。有了其他皮质和皮质下边缘的分割,这个工具将使 FreeSurfer 能够以自动化的方式提供对边缘系统的全面视图。