Chen Xing, Zheng Cuixiu, Zhou Sai, Liu Yaowen, Zhang Zongzhi
Key Laboratory of Micro and Nano Photonic Structures (MOE), School of Information Science and Technology, Fudan University, Shanghai 200433, People's Republic of China.
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China.
J Phys Condens Matter. 2021 Oct 27;34(1). doi: 10.1088/1361-648X/ac2a79.
One key advantage of antiferromagnets over ferromagnets is the high magnetic resonance frequencies that enable ultrafast magnetization switching and oscillations. Among a variety of antiferromagnets, the synthetic antiferromagnet (SAF) is a promising candidate for high-speed spintronic devices design. In this paper, micromagnetic simulations are employed to study the resonance modes in an SAF structure consisting of two identical CoFeB ferromagnetic (FM) layers that are antiferromagnetically coupled via interlayer exchange coupling. When the external bias magnetic field is small enough to ensure the magnetizations of two FM sublayers remain antiparallel alignments, we find that there exist two resonance modes with different precession chirality, namely-component synchronized mode and-component synchronized mode, respectively. These two resonance modes show different features from the conventional in-phase acoustic mode and out-of-phase optic mode. The simulation results are in good agreement with our theoretical analyses.
反铁磁体相对于铁磁体的一个关键优势在于其具有较高的磁共振频率,这使得超快磁化翻转和振荡成为可能。在各种反铁磁体中,合成反铁磁体(SAF)是高速自旋电子器件设计的一个有前景的候选材料。本文采用微磁模拟方法研究了由两个相同的CoFeB铁磁(FM)层组成的SAF结构中的共振模式,这两个铁磁层通过层间交换耦合实现反铁磁耦合。当外部偏置磁场足够小以确保两个FM子层的磁化保持反平行排列时,我们发现存在两种具有不同进动手性的共振模式,分别为分量同步模式和分量同步模式。这两种共振模式与传统的同相声学模式和异相光学模式具有不同的特征。模拟结果与我们的理论分析吻合良好。