Chen Chong, Liu Peisen, Liang Shixuan, Zhang Yichi, Zhu Wenxuan, Han Lei, Wang Qian, Fu Sulei, Pan Feng, Song Cheng
Key Laboratory of Advanced Materials, School of Materials Science and Engineering, <a href="https://ror.org/03cve4549">Tsinghua University</a>, Beijing 100084, China.
Phys Rev Lett. 2024 Aug 2;133(5):056702. doi: 10.1103/PhysRevLett.133.056702.
Compensated synthetic antiferromagnets (SAFs) stand out as promising candidates to explore various spintronic applications, benefitting from high precession frequency and negligible stray field. High-frequency antiferromagnetic resonance in SAFs, especially the optic mode (OM), is highly desired to attain fast operation speed in antiferromagnetic spintronic devices. SAFs exhibit ferromagnetic configurations above saturation field; however in that case, the intensity of OM is theoretically zero and hard to be detected in well-established microwave resonance experiments. To expose the hidden OM, the exchange symmetry between magnetic layers must be broken, inevitably introducing remanent magnetization. Here, we experimentally demonstrate a feasible method to break the symmetry via surface acoustic waves with the maintenance of compensated SAF structure. By introducing an out-of-plane strain gradient inside the Ir-mediated SAFs, we successfully reveal the hidden OM. Remarkably, the OM intensity can be effectively modulated by controlling strain gradients in SAFs with different thicknesses, confirmed by finite-element simulations. Our findings provide a feasible scheme for detecting the concealed OM, which would trigger future discoveries in magnon-phonon coupling and hybrid quasiparticle systems.
补偿型合成反铁磁体(SAFs)作为探索各种自旋电子学应用的有前途的候选者脱颖而出,这得益于其高进动频率和可忽略不计的杂散场。SAFs中的高频反铁磁共振,特别是光学模式(OM),对于在反铁磁自旋电子器件中实现快速运行速度非常关键。SAFs在饱和场以上呈现铁磁构型;然而在这种情况下,OM的强度理论上为零,并且在成熟的微波共振实验中很难被检测到。为了揭示隐藏的OM,必须打破磁性层之间的交换对称性,这不可避免地会引入剩余磁化。在此,我们通过实验证明了一种可行的方法,即通过表面声波打破对称性,同时保持补偿型SAF结构。通过在Ir介导的SAFs内部引入面外应变梯度,我们成功揭示了隐藏的OM。值得注意的是,通过控制不同厚度SAFs中的应变梯度,可以有效调制OM强度,这得到了有限元模拟的证实。我们的发现为检测隐藏的OM提供了一种可行的方案,这将引发在磁子 - 声子耦合和混合准粒子系统方面的未来发现。