Marini Cecilia, Cossu Vanessa, Kumar Mandeep, Milanese Marco, Cortese Katia, Bruno Silvia, Bellese Grazia, Carta Sonia, Zerbo Roberta Arianna, Torazza Carola, Bauckneht Matteo, Venturi Consuelo, Raffa Stefano, Orengo Anna Maria, Donegani Maria Isabella, Chiola Silvia, Ravera Silvia, Castellani Patrizia, Morbelli Silvia, Sambuceti Gianmario, Bonanno Giambattista
CNR Institute of Molecular Bioimaging and Physiology (IBFM), Segrate, 20054 Milan, Italy.
Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
Antioxidants (Basel). 2021 Aug 30;10(9):1392. doi: 10.3390/antiox10091392.
Recent studies reported that the uptake of [18F]-fluorodeoxyglucose (FDG) is increased in the spinal cord (SC) and decreased in the motor cortex (MC) of patients with ALS, suggesting that the disease might differently affect the two nervous districts with different time sequence or with different mechanisms. Here we show that MC and SC astrocytes harvested from newborn B6SJL-Tg (SOD1) 1Gur mice could play different roles in the pathogenesis of the disease. Spectrophotometric and cytofluorimetric analyses showed an increase in redox stress, a decrease in antioxidant capacity and a relative mitochondria respiratory uncoupling in MC SOD1 astrocytes. By contrast, SC mutated cells showed a higher endurance against oxidative damage, through the increase in antioxidant defense, and a preserved respiratory function. FDG uptake reproduced the metabolic response observed in ALS patients: SOD1 mutation caused a selective enhancement in tracer retention only in mutated SC astrocytes, matching the activity of the reticular pentose phosphate pathway and, thus, of hexose-6P dehydrogenase. Finally, both MC and SC mutated astrocytes were characterized by an impressive ultrastructural enlargement of the endoplasmic reticulum (ER) and impairment in ER-mitochondria networking, more evident in mutated MC than in SC cells. Thus, SOD1 mutation differently impaired MC and SC astrocyte biology in a very early stage of life.
最近的研究报告称,肌萎缩侧索硬化症(ALS)患者脊髓(SC)中[18F] - 氟脱氧葡萄糖(FDG)摄取增加,而运动皮层(MC)中摄取减少,这表明该疾病可能以不同的时间顺序或不同机制对这两个神经区域产生不同影响。在此我们表明,从新生B6SJL - Tg(SOD1)1Gur小鼠收获的MC和SC星形胶质细胞在该疾病的发病机制中可能发挥不同作用。分光光度法和细胞荧光分析表明,MC SOD1星形胶质细胞中氧化还原应激增加、抗氧化能力下降以及相对线粒体呼吸解偶联。相比之下,SC突变细胞通过增强抗氧化防御对氧化损伤表现出更高的耐受性,并且呼吸功能得以保留。FDG摄取再现了在ALS患者中观察到的代谢反应:SOD1突变仅导致突变的SC星形胶质细胞中示踪剂滞留选择性增强,这与网状磷酸戊糖途径以及因此与己糖 - 6P脱氢酶的活性相匹配。最后,MC和SC突变星形胶质细胞的特征均为内质网(ER)出现令人印象深刻的超微结构扩大以及ER - 线粒体网络受损,在突变的MC中比在SC细胞中更明显。因此,SOD1突变在生命的非常早期就对MC和SC星形胶质细胞生物学产生了不同程度的损害。