Suppr超能文献

神经群体模型的全局动力学。

Global dynamics of neural mass models.

机构信息

GOS-UCL Institute of Child Health, University College London, London, United Kingdom.

Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom.

出版信息

PLoS Comput Biol. 2023 Feb 10;19(2):e1010915. doi: 10.1371/journal.pcbi.1010915. eCollection 2023 Feb.

Abstract

Neural mass models are used to simulate cortical dynamics and to explain the electrical and magnetic fields measured using electro- and magnetoencephalography. Simulations evince a complex phase-space structure for these kinds of models; including stationary points and limit cycles and the possibility for bifurcations and transitions among different modes of activity. This complexity allows neural mass models to describe the itinerant features of brain dynamics. However, expressive, nonlinear neural mass models are often difficult to fit to empirical data without additional simplifying assumptions: e.g., that the system can be modelled as linear perturbations around a fixed point. In this study we offer a mathematical analysis of neural mass models, specifically the canonical microcircuit model, providing analytical solutions describing slow changes in the type of cortical activity, i.e. dynamical itinerancy. We derive a perturbation analysis up to second order of the phase flow, together with adiabatic approximations. This allows us to describe amplitude modulations in a relatively simple mathematical format providing analytic proof-of-principle for the existence of semi-stable states of cortical dynamics at the scale of a cortical column. This work allows for model inversion of neural mass models, not only around fixed points, but over regions of phase space that encompass transitions among semi or multi-stable states of oscillatory activity. Crucially, these theoretical results speak to model inversion in the context of multiple semi-stable brain states, such as the transition between interictal, pre-ictal and ictal activity in epilepsy.

摘要

神经群模型被用于模拟皮质动力学,并解释使用脑电和脑磁图测量到的电和磁场。这些模型的模拟表现出了复杂的相空间结构,包括稳定点和极限环,以及分岔和不同活动模式之间转换的可能性。这种复杂性使神经群模型能够描述脑动力学的遍历特征。然而,表现力强的非线性神经群模型在没有额外简化假设的情况下,通常难以拟合经验数据:例如,系统可以被建模为固定点周围的线性微扰。在这项研究中,我们对神经群模型进行了数学分析,特别是规范微电路模型,提供了描述皮质活动类型(即动力遍历)缓慢变化的解析解。我们推导出了相流的二阶摄动分析,以及绝热近似。这使我们能够以相对简单的数学格式描述幅度调制,为皮质柱尺度上皮质动力学的半稳定状态的存在提供了分析性证明。这项工作允许对神经群模型进行模型反转,不仅在固定点周围,而且在包括半稳定或多稳定振荡活动之间转换的相空间区域。至关重要的是,这些理论结果涉及到多个半稳定脑状态下的模型反转,例如癫痫发作中癫痫发作间期、发作前期和发作期之间的转换。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a1/9949652/dff952bc93fa/pcbi.1010915.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验