Suppr超能文献

皮质场理论 - 动力学与对称性。

A cortical field theory - dynamics and symmetries.

机构信息

Karolinska Institutet, Stockholm, Sweden.

Department of Electrical Engineering, Uppsala University, Uppsala, Sweden.

出版信息

J Comput Neurosci. 2024 Nov;52(4):267-284. doi: 10.1007/s10827-024-00878-y. Epub 2024 Oct 1.

Abstract

We characterise cortical dynamics using partial differential equations (PDEs), analysing various connectivity patterns within the cortical sheet. This exploration yields diverse dynamics, encompassing wave equations and limit cycle activity. We presume balanced equations between excitatory and inhibitory neuronal units, reflecting the ubiquitous oscillatory patterns observed in electrophysiological measurements. Our derived dynamics comprise lowest-order wave equations (i.e., the Klein-Gordon model), limit cycle waves, higher-order PDE formulations, and transitions between limit cycles and near-zero states. Furthermore, we delve into the symmetries of the models using the Lagrangian formalism, distinguishing between continuous and discontinuous symmetries. These symmetries allow for mathematical expediency in the analysis of the model and could also be useful in studying the effect of symmetrical input from distributed cortical regions. Overall, our ability to derive multiple constraints on the fields - and predictions of the model - stems largely from the underlying assumption that the brain operates at a critical state. This assumption, in turn, drives the dynamics towards oscillatory or semi-conservative behaviour. Within this critical state, we can leverage results from the physics literature, which serve as analogues for neural fields, and implicit construct validity. Comparisons between our model predictions and electrophysiological findings from the literature - such as spectral power distribution across frequencies, wave propagation speed, epileptic seizure generation, and pattern formation over the cortical surface - demonstrate a close match. This study underscores the importance of utilizing symmetry preserving PDE formulations for further mechanistic insights into cortical activity.

摘要

我们使用偏微分方程 (PDEs) 来描述皮层动力学,分析皮层片中的各种连接模式。这种探索产生了各种动力学,包括波动方程和极限环活动。我们假设兴奋性和抑制性神经元单元之间的平衡方程,反映了在电生理测量中观察到的普遍的振荡模式。我们得出的动力学包括最低阶波动方程(即 Klein-Gordon 模型)、极限环波、高阶 PDE 公式以及极限环和近零状态之间的转换。此外,我们使用拉格朗日形式主义研究模型的对称性,区分连续和不连续对称性。这些对称性在分析模型时提供了数学上的便利,并且在研究来自分布式皮层区域的对称输入的影响时也可能有用。总的来说,我们能够对场施加多种约束 - 以及模型的预测 - 主要源于大脑处于临界状态的基本假设。这种假设反过来又使动力学朝着振荡或半保守行为发展。在这个临界状态下,我们可以利用物理学文献中的结果,这些结果作为神经场的类似物,并具有隐含的构造有效性。我们的模型预测与文献中的电生理发现之间的比较 - 例如频谱功率分布随频率的变化、波传播速度、癫痫发作的产生以及皮层表面的模式形成 - 表明匹配度很高。这项研究强调了利用保持对称性的 PDE 公式来进一步深入了解皮层活动的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b747/11470901/a8d3a5340fae/10827_2024_878_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验