Institute of Chemistry, Jan Kochanowski University of Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland.
Institute of Biology, Jan Kochanowski University of Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland.
Int J Mol Sci. 2021 Sep 18;22(18):10113. doi: 10.3390/ijms221810113.
Antimicrobial resistance is a growing public health concern that requires urgent action. Biofilm-associated resistance to antimicrobials begins at the attachment phase and increases as the biofilms maturate. Hence, interrupting the initial binding process of bacteria to surfaces is essential to effectively prevent biofilm-associated problems. Herein, we have evaluated the antibacterial and anti-biofilm activities of three ruthenium complexes in different oxidation states with 2-pyridin-2-yl-1-benzimidazole (L = 2,2'-PyBIm): [(η--cymene)RuClL]PF (Ru(II) complex), -[RuCl(CHCN)L]·L·3HO (Ru(III) complex), (HL)[RuCl(CHCN)][RuCl(CHCN)]·2Cl·6HO (Ru(III/IV) complex). The biological activity of the compounds was screened against , , and strains. The results indicated that the anti-biofilm activity of the Ru complexes at concentration of 1 mM was better than that of the ligand alone against the PAO1. It means that ligand, in combination with ruthenium ion, shows a synergistic effect. The effect of the Ru complexes on cell surface properties was determined by the contact angle and zeta potential values. The electric and physical properties of the microbial surface are useful tools for the examined aggregation phenomenon and disruption of the adhesion. Considering that intermolecular interactions are important and largely define the functions of compounds, we examined interactions in the crystals of the Ru complexes using the Hirshfeld surface analysis.
抗微生物耐药性是一个日益严重的公共卫生问题,需要采取紧急行动。生物膜相关的抗微生物耐药性始于附着阶段,并随着生物膜的成熟而增加。因此,中断细菌与表面的初始结合过程对于有效预防生物膜相关问题至关重要。在此,我们评估了三种不同氧化态的钌配合物与 2-吡啶-2-基-1-苯并咪唑(L=2,2'-PyBIm)的抗菌和抗生物膜活性:[(η--环戊二烯)RuClL]PF(Ru(II)配合物),-[RuCl(CHCN)L]·L·3HO(Ru(III)配合物),(HL)[RuCl(CHCN)][RuCl(CHCN)]·2Cl·6HO(Ru(III/IV)配合物)。这些化合物的生物活性被筛选用于 、 和 菌株。结果表明,在 1mM 浓度下,Ru 配合物的抗生物膜活性优于单独配体对 PAO1 的活性。这意味着配体与钌离子结合表现出协同作用。Ru 配合物对细胞表面特性的影响通过接触角和zeta 电位值来确定。微生物表面的电和物理性质是研究聚集现象和破坏粘附的有用工具。考虑到分子间相互作用很重要,并在很大程度上决定了化合物的功能,我们使用 Hirshfeld 表面分析研究了 Ru 配合物晶体中的相互作用。