Ibáñez Maria, Luo Zhishan, Genç Aziz, Piveteau Laura, Ortega Silvia, Cadavid Doris, Dobrozhan Oleksandr, Liu Yu, Nachtegaal Maarten, Zebarjadi Mona, Arbiol Jordi, Kovalenko Maksym V, Cabot Andreu
Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zurich, Switzerland.
Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.
Nat Commun. 2016 Mar 7;7:10766. doi: 10.1038/ncomms10766.
The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.
通过耐用、静音且可扩展的固态热电器件实现热能与电能之间的高效转换一直是一个长期目标。虽然纳米晶体材料已经带来了显著更高的热电效率,但预计通过对纳米级构建单元和界面进行精确的化学工程可实现进一步的改进。在此,我们提出一种基于胶体纳米晶体组装的简单且通用的自下而上策略,以制备致密但具有纳米结构的热电材料。在关于PbS-Ag体系的案例研究中,Ag纳米域不仅有助于阻碍声子传播,还为PbS主体半导体提供电子,并降低PbS晶粒间电荷传输的能垒。因此,与PbS纳米材料相比,PbS-Ag纳米复合材料的热导率降低,电荷载流子浓度和迁移率更高。材料传输性能的这种改善使得在850 K时的热电优值高达1.7。