Suppr超能文献

使用“第22条军规”方法和个性化优化输入特征集,以准确可靠地估计连续无袖带血压。

Optimizing Input Feature Sets Using Catch-22 and Personalization for an Accurate and Reliable Estimation of Continuous, Cuffless Blood Pressure.

作者信息

Kasbekar Rajesh S, Radhakrishnan Srinivasan, Ji Songbai, Goel Anita, Clancy Edward A

机构信息

Department of Biomedical Engineering, Worcester Polytechnic Institute (WPI), Worcester, MA 01609, USA.

Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.

出版信息

Bioengineering (Basel). 2025 May 6;12(5):493. doi: 10.3390/bioengineering12050493.

Abstract

Nocturnal monitoring of continuous, cuffless blood pressure (BP) can unleash a whole new world for the prognostication of cardiovascular and other diseases due to its strong predictive capability. Nevertheless, the lack of an accurate and reliable method, primarily due to confounding variables, has prevented its widespread clinical adoption. Herein, we demonstrate how optimized machine learning using the Catch-22 features, when applied to the photoplethysmogram waveform and personalized with direct BP data through transfer learning, can accurately estimate systolic and diastolic BP. After training with a hemodynamically compromised VitalDB "calibration-free" dataset (n = 1293), the systolic and diastolic BP tested on a distinct VitalDB dataset that met AAMI criteria (n = 116) had acceptable error biases of -1.85 mm Hg and 0.11 mm Hg, respectively [within the 5 mm Hg IEC/ANSI/AAMI 80601-2-30, 2018 standard], but standard deviation (SD) errors of 19.55 mm Hg and 11.55 mm Hg, respectively [exceeding the stipulated 8 mm Hg limit]. However, personalization using an initial calibration data segment and subsequent use of transfer learning to fine-tune the pretrained model produced acceptable mean (-1.31 mm Hg and 0.10 mm Hg) and SD (7.91 mm Hg and 4.59 mm Hg) errors for systolic and diastolic BP, respectively. Levene's test for variance found that the personalization method significantly outperformed ( < 0.05) the calibration-free method, but there was no difference between three machine learning methods. Optimized multimodal Catch-22 features, coupled with personalization, demonstrate great promise in the clinical adoption of continuous, cuffless blood pressure estimation in applications such as nocturnal BP monitoring.

摘要

由于其强大的预测能力,对连续、无袖带血压(BP)进行夜间监测可为心血管疾病和其他疾病的预后预测带来全新的前景。然而,主要由于混杂变量的存在,缺乏一种准确可靠的方法阻碍了其在临床中的广泛应用。在此,我们展示了如何使用Catch-22特征进行优化的机器学习,将其应用于光电容积脉搏波描记图波形,并通过迁移学习用直接血压数据进行个性化处理,从而能够准确估计收缩压和舒张压。在用血流动力学受损的VitalDB“免校准”数据集(n = 1293)进行训练后,在符合AAMI标准的不同VitalDB数据集(n = 116)上测试的收缩压和舒张压分别具有可接受的误差偏差-1.85 mmHg和0.11 mmHg[在2018年IEC/ANSI/AAMI 80601-2-30标准的5 mmHg范围内],但标准差(SD)误差分别为19.55 mmHg和11.55 mmHg[超过规定的8 mmHg限值]。然而,使用初始校准数据段进行个性化处理并随后使用迁移学习对预训练模型进行微调,分别产生了收缩压和舒张压可接受的平均误差(-1.31 mmHg和0.10 mmHg)和SD误差(7.91 mmHg和4.59 mmHg)。Levene方差检验发现,个性化方法显著优于(<0.05)免校准方法,但三种机器学习方法之间没有差异。优化的多模态Catch-22特征与个性化相结合,在夜间血压监测等应用中连续、无袖带血压估计的临床应用中显示出巨大的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816c/12109000/516f4b28490f/bioengineering-12-00493-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验