Suppr超能文献

LHCb 甲壳虫读出 ASIC 的仿真和优化研究及用于脉冲形状重建的机器学习方法。

Simulation and Optimization Studies of the LHCb Beetle Readout ASIC and Machine Learning Approach for Pulse Shape Reconstruction.

机构信息

Department of Particle Interactions and Detection Techniques, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.

Nikhef National Institute for Subatomic Physics, 1098 XG Amsterdam, The Netherlands.

出版信息

Sensors (Basel). 2021 Sep 10;21(18):6075. doi: 10.3390/s21186075.

Abstract

The optimization of the Beetle readout ASIC and the performance of the software for the signal processing based on machine learning methods are presented. The Beetle readout chip was developed for the LHCb (Large Hadron Collider beauty) tracking detectors and was used in the VELO (Vertex Locator) during Run 1 and 2 of LHC data taking. The VELO, surrounding the LHC beam crossing region, was a leading part of the LHCb tracking system. The Beetle chip was used to read out the signal from silicon microstrips, integrating and amplifying it. The studies presented in this paper cover the optimization of its electronic configuration to achieve the lower power consumption footprint and the lower operational temperature of the sensors, while maintaining a good condition of the analogue response of the whole chip. The studies have shown that optimizing the operational temperature is possible and can be beneficial when the detector is highly irradiated. Even a single degree drop in silicon temperature can result in a significant reduction in the leakage current. Similar studies are being performed for the future silicon tracker, the Upstream Tracker (UT), which will start operating at LHC in 2021. It is expected that the inner part of the UT detector will suffer radiation damage similar to the most irradiated VELO sensors in Run 2. In the course of analysis we also developed a general approach for the pulse shape reconstruction using an ANN approach. This technique can be reused in case of any type of front-end readout chip.

摘要

介绍了 Beetle 读出 ASIC 的优化以及基于机器学习方法的信号处理软件的性能。Beetle 读出芯片是为 LHCb(大型强子对撞机美丽)跟踪探测器开发的,在 LHC 数据采集的 Run 1 和 Run 2 期间用于 VELO(顶点定位器)。VELO 环绕 LHC 束交叉区域,是 LHCb 跟踪系统的主要部分。Beetle 芯片用于读取硅微条的信号,对其进行积分和放大。本文介绍的研究涵盖了优化其电子配置以实现更低的功耗和更低的传感器工作温度,同时保持整个芯片模拟响应的良好状态。研究表明,优化工作温度是可能的,当探测器受到高辐射时,这将是有益的。即使硅温度降低一度,漏电流也会显著减少。对于未来的硅跟踪器,即 2021 年开始在 LHC 运行的上游跟踪器(UT),正在进行类似的研究。预计 UT 探测器的内部将遭受与 Run 2 中受辐射最严重的 VELO 传感器相似的辐射损伤。在分析过程中,我们还开发了一种使用 ANN 方法进行脉冲形状重建的通用方法。在任何类型的前端读出芯片的情况下,都可以重复使用这种技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/744d/8473058/2ce571f9613b/sensors-21-06075-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验