Di Mauro Giuseppe, Rauti Rossana, Casani Raffaele, Chimowa George, Galibert Anne Marie, Flahaut Emmanuel, Cellot Giada, Ballerini Laura
Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy.
CIRIMAT, UMR CNRS 5085, Université Toulouse Paul Sabatier, Bat. CIRIMAT, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France.
Nanomaterials (Basel). 2021 Aug 24;11(9):2161. doi: 10.3390/nano11092161.
The increasing engineering of biomedical devices and the design of drug-delivery platforms enriched by graphene-based components demand careful investigations of the impact of graphene-related materials (GRMs) on the nervous system. In addition, the enhanced diffusion of GRM-based products and technologies that might favor the dispersion in the environment of GRMs nanoparticles urgently requires the potential neurotoxicity of these compounds to be addressed. One of the challenges in providing definite evidence supporting the harmful or safe use of GRMs is addressing the variety of this family of materials, with GRMs differing for size and chemistry. Such a diversity impairs reaching a unique and predictive picture of the effects of GRMs on the nervous system. Here, by exploiting the thermal reduction of graphene oxide nanoflakes (GO) to generate materials with different oxygen/carbon ratios, we used a high-throughput analysis of early-stage zebrafish locomotor behavior to investigate if modifications of a specific GRM chemical property influenced how these nanomaterials affect vertebrate sensory-motor neurophysiology-exposing zebrafish to GO downregulated their swimming performance. Conversely, reduced GO (rGO) treatments boosted locomotor activity. We concluded that the tuning of single GRM chemical properties is sufficient to produce differential effects on nervous system physiology, likely interfering with different signaling pathways.
生物医学设备工程的不断发展以及由基于石墨烯的组件丰富的药物递送平台的设计,需要仔细研究石墨烯相关材料(GRMs)对神经系统的影响。此外,基于GRM的产品和技术的扩散加剧,可能有利于GRMs纳米颗粒在环境中的分散,这迫切需要解决这些化合物的潜在神经毒性问题。提供确凿证据支持GRMs有害或安全使用的挑战之一是应对这类材料的多样性,GRMs在尺寸和化学性质上存在差异。这种多样性阻碍了对GRMs对神经系统影响形成独特且可预测的认识。在此,通过利用氧化石墨烯纳米片(GO)的热还原制备具有不同氧/碳比的材料,我们采用高通量分析早期斑马鱼运动行为的方法,来研究特定GRM化学性质的改变是否会影响这些纳米材料对脊椎动物感觉运动神经生理学的影响——将斑马鱼暴露于GO会下调其游泳性能。相反,还原氧化石墨烯(rGO)处理则增强了运动活性。我们得出结论,单一GRM化学性质的调节足以对神经系统生理学产生不同影响,可能会干扰不同的信号通路。