Suppr超能文献

用于生物医学应用的石墨烯相关纳米材料。

Graphene-Related Nanomaterials for Biomedical Applications.

作者信息

Lazăr Andreea-Isabela, Aghasoleimani Kimia, Semertsidou Anna, Vyas Jahnavi, Roșca Alin-Lucian, Ficai Denisa, Ficai Anton

机构信息

Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania.

National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania.

出版信息

Nanomaterials (Basel). 2023 Mar 17;13(6):1092. doi: 10.3390/nano13061092.

Abstract

This paper builds on the context and recent progress on the control, reproducibility, and limitations of using graphene and graphene-related materials (GRMs) in biomedical applications. The review describes the human hazard assessment of GRMs in in vitro and in vivo studies, highlights the composition-structure-activity relationships that cause toxicity for these substances, and identifies the key parameters that determine the activation of their biological effects. GRMs are designed to offer the advantage of facilitating unique biomedical applications that impact different techniques in medicine, especially in neuroscience. Due to the increasing utilization of GRMs, there is a need to comprehensively assess the potential impact of these materials on human health. Various outcomes associated with GRMs, including biocompatibility, biodegradability, beneficial effects on cell proliferation, differentiation rates, apoptosis, necrosis, autophagy, oxidative stress, physical destruction, DNA damage, and inflammatory responses, have led to an increasing interest in these regenerative nanostructured materials. Considering the existence of graphene-related nanomaterials with different physicochemical properties, the materials are expected to exhibit unique modes of interactions with biomolecules, cells, and tissues depending on their size, chemical composition, and hydrophil-to-hydrophobe ratio. Understanding such interactions is crucial from two perspectives, namely, from the perspectives of their toxicity and biological uses. The main aim of this study is to assess and tune the diverse properties that must be considered when planning biomedical applications. These properties include flexibility, transparency, surface chemistry (hydrophil-hydrophobe ratio), thermoelectrical conductibility, loading and release capacity, and biocompatibility.

摘要

本文基于石墨烯及石墨烯相关材料(GRMs)在生物医学应用中的控制、可重复性及局限性方面的背景和最新进展。该综述描述了GRMs在体外和体内研究中的人体危害评估,强调了导致这些物质产生毒性的组成-结构-活性关系,并确定了决定其生物效应激活的关键参数。GRMs旨在提供便利独特生物医学应用的优势,这些应用会影响医学中的不同技术,尤其是神经科学领域。由于GRMs的使用日益增加,有必要全面评估这些材料对人类健康的潜在影响。与GRMs相关的各种结果,包括生物相容性、生物降解性、对细胞增殖、分化率、细胞凋亡、坏死、自噬、氧化应激、物理破坏、DNA损伤和炎症反应的有益影响,已引发人们对这些再生纳米结构材料越来越浓厚的兴趣。考虑到存在具有不同物理化学性质的石墨烯相关纳米材料,预计这些材料根据其尺寸、化学成分和亲水-疏水比,会与生物分子、细胞和组织表现出独特的相互作用模式。从毒性和生物学用途这两个角度理解这种相互作用至关重要。本研究的主要目的是评估和调整在规划生物医学应用时必须考虑的各种性质。这些性质包括柔韧性、透明度、表面化学性质(亲水-疏水比)、热电导率、负载和释放能力以及生物相容性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e147/10051126/b415e6720072/nanomaterials-13-01092-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验