文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Ionic Liquid-Based Materials for Biomedical Applications.

作者信息

Correia Daniela Maria, Fernandes Liliana Correia, Fernandes Margarida Macedo, Hermenegildo Bruno, Meira Rafaela Marques, Ribeiro Clarisse, Ribeiro Sylvie, Reguera Javier, Lanceros-Méndez Senentxu

机构信息

Centre of Physics, University of Minho, 4710-058 Braga, Portugal.

Centre of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal.

出版信息

Nanomaterials (Basel). 2021 Sep 15;11(9):2401. doi: 10.3390/nano11092401.


DOI:10.3390/nano11092401
PMID:34578716
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8471968/
Abstract

Ionic liquids (ILs) have been extensively explored and implemented in different areas, ranging from sensors and actuators to the biomedical field. The increasing attention devoted to ILs centers on their unique properties and possible combination of different cations and anions, allowing the development of materials with specific functionalities and requirements for applications. Particularly for biomedical applications, ILs have been used for biomaterials preparation, improving dissolution and processability, and have been combined with natural and synthetic polymer matrixes to develop IL-polymer hybrid materials to be employed in different fields of the biomedical area. This review focus on recent advances concerning the role of ILs in the development of biomaterials and their combination with natural and synthetic polymers for different biomedical areas, including drug delivery, cancer therapy, tissue engineering, antimicrobial and antifungal agents, and biosensing.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/78027ab63e85/nanomaterials-11-02401-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/2bfe0eb7d5e9/nanomaterials-11-02401-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/85a2f1b78fbe/nanomaterials-11-02401-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/f621986f524e/nanomaterials-11-02401-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/7a221b254bf3/nanomaterials-11-02401-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/f7ec345b171e/nanomaterials-11-02401-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/cea1841a14f0/nanomaterials-11-02401-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/74cc1692782d/nanomaterials-11-02401-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/bf963096d8fa/nanomaterials-11-02401-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/a48250fc3ba4/nanomaterials-11-02401-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/b7f02e0720e8/nanomaterials-11-02401-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/25ca9819f211/nanomaterials-11-02401-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/34c0e08d72b4/nanomaterials-11-02401-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/e826b2d6aa79/nanomaterials-11-02401-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/8091884318f5/nanomaterials-11-02401-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/f196164fc1a7/nanomaterials-11-02401-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/13c99258674c/nanomaterials-11-02401-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/7d079db7276f/nanomaterials-11-02401-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/653c2fd3fb10/nanomaterials-11-02401-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/5dae77e96635/nanomaterials-11-02401-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/3d4e97245cb0/nanomaterials-11-02401-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/78027ab63e85/nanomaterials-11-02401-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/2bfe0eb7d5e9/nanomaterials-11-02401-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/85a2f1b78fbe/nanomaterials-11-02401-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/f621986f524e/nanomaterials-11-02401-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/7a221b254bf3/nanomaterials-11-02401-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/f7ec345b171e/nanomaterials-11-02401-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/cea1841a14f0/nanomaterials-11-02401-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/74cc1692782d/nanomaterials-11-02401-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/bf963096d8fa/nanomaterials-11-02401-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/a48250fc3ba4/nanomaterials-11-02401-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/b7f02e0720e8/nanomaterials-11-02401-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/25ca9819f211/nanomaterials-11-02401-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/34c0e08d72b4/nanomaterials-11-02401-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/e826b2d6aa79/nanomaterials-11-02401-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/8091884318f5/nanomaterials-11-02401-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/f196164fc1a7/nanomaterials-11-02401-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/13c99258674c/nanomaterials-11-02401-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/7d079db7276f/nanomaterials-11-02401-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/653c2fd3fb10/nanomaterials-11-02401-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/5dae77e96635/nanomaterials-11-02401-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/3d4e97245cb0/nanomaterials-11-02401-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/8471968/78027ab63e85/nanomaterials-11-02401-g021.jpg

相似文献

[1]
Ionic Liquid-Based Materials for Biomedical Applications.

Nanomaterials (Basel). 2021-9-15

[2]
The Potential Role of Ionic Liquid as a Multifunctional Dental Biomaterial.

Biomedicines. 2023-11-20

[3]
Recent Research Progress of Ionic Liquid Dissolving Silks for Biomedicine and Tissue Engineering Applications.

Int J Mol Sci. 2022-8-5

[4]
Marine-Derived Polymers in Ionic Liquids: Architectures Development and Biomedical Applications.

Mar Drugs. 2020-6-30

[5]
Review of ionic liquid and ionogel-based biomaterials for advanced drug delivery.

Adv Colloid Interface Sci. 2024-9

[6]
Role and Recent Advancements of Ionic Liquids in Drug Delivery Systems.

Pharmaceutics. 2023-2-20

[7]
Recent advances in the application of ionic liquids in antimicrobial material for air disinfection and sterilization.

Front Cell Infect Microbiol. 2023

[8]
Ionic liquids: solvents and sorbents in sample preparation.

J Sep Sci. 2017-10-17

[9]
Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities.

Chem Soc Rev. 2023-10-16

[10]
Applications of choline-based ionic liquids in drug delivery.

Int J Pharm. 2022-1-25

引用本文的文献

[1]
A convergence of synthesis and antimicrobial research: imidazolium based dicationic ionic liquids.

BMC Chem. 2025-7-23

[2]
Ionic liquid-iontophoresis mediates transdermal delivery of sparingly soluble drugs.

Drug Deliv. 2025-12

[3]
Stimuli-Responsive Self-Healing Ionic Gels: A Promising Approach for Dermal and Tissue Engineering Applications.

ACS Biomater Sci Eng. 2025-3-10

[4]
Polymerizable Cholinium-Based Antibiotics for Polymer Carriers: Systems with Combined Load of Cloxacillin and Ampicillin.

Molecules. 2024-12-18

[5]
Recent advances in hydrogel-based flexible strain sensors for harsh environment applications.

Chem Sci. 2024-10-8

[6]
Design, synthesis, analgesic, antibacterial and docking studies of novel 8-piperazinylcaffeine carboxylate ionic liquids.

RSC Adv. 2024-9-10

[7]
Molecular interaction between three novel amino acid based deep eutectic solvents with surface active ionic liquid: A comparative study.

Heliyon. 2024-8-5

[8]
Optical Modification of a Nanoporous Alumina Structure Associated with Surface Coverage by the Ionic Liquid AliquatCl.

Micromachines (Basel). 2024-5-31

[9]
Emerging Trends in Hybrid Nanoparticles: Revolutionary Advances and Promising Biomedical Applications.

Curr Drug Metab. 2024

[10]
Tuning of the Anti-Breast Cancer Activity of Betulinic Acid via Its Conversion to Ionic Liquids.

Pharmaceutics. 2024-4-3

本文引用的文献

[1]
Phase Transitions and Electrochemical Properties of Ionic Liquids and Ionic Liquid-Solvent Mixtures.

Molecules. 2021-6-16

[2]
Room Temperature Ionic Liquids-Based Electrochemical Sensors: An Overview on Paracetamol Detection.

Crit Rev Anal Chem. 2022

[3]
Synthesis of Heparin-Immobilized, Magnetically Addressable Cellulose Nanofibers for Biomedical Applications.

ACS Biomater Sci Eng. 2016-11-14

[4]
Smart Collagen Hydrogels Based on 1-Ethyl-3-methylimidazolium Acetate and Microbial Transglutaminase for Potential Applications in Tissue Engineering and Cancer Therapy.

ACS Biomater Sci Eng. 2019-7-8

[5]
A self-powered skin-patch electrochromic biosensor.

Biosens Bioelectron. 2021-3-1

[6]
Revisiting Ionic Liquid Structure-Property Relationship: A Critical Analysis.

Int J Mol Sci. 2020-10-19

[7]
"Clicking" an Ionic Liquid to a Potent Antimicrobial Peptide: On the Route towards Improved Stability.

Int J Mol Sci. 2020-8-26

[8]
Antimicrobial Activities of Highly Bioavailable Organic Salts and Ionic Liquids from Fluoroquinolones.

Pharmaceutics. 2020-7-23

[9]
Phosphonium-ammonium-based di-cationic ionic liquids as antibacterial over the ESKAPE group.

Bioorg Med Chem Lett. 2020-9-15

[10]
Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups.

Carbohydr Polym. 2020-8-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索