Suppr超能文献

一种支架,不同细胞器传感器:用于靶向活小胶质细胞细胞器的 pH 激活型荧光探针。

One Scaffold, Different Organelle Sensors: pH-Activable Fluorescent Probes for Targeting Live Microglial Cell Organelles.

机构信息

Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.

Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA.

出版信息

Chembiochem. 2022 May 4;23(9):e202100378. doi: 10.1002/cbic.202100378. Epub 2021 Oct 13.

Abstract

Targeting live cell organelles is essential for imaging, understanding, and controlling specific biochemical processes. Typically, fluorescent probes with distinct structural scaffolds are used to target specific cell organelles. Here, we have designed a modular one-step synthetic strategy using a common reaction intermediate to develop new lysosomal, mitochondrial, and nucleus-targeting pH-activable fluorescent probes that are all based on a single boron dipyrromethane scaffold. The divergent cell organelle targeting was achieved by synthesizing probes with specific functional group changes to the central scaffold resulting in differential fluorescence and pK . Specifically, we show that the functional group transformation of the same scaffold influences cellular localization and specificity of pH-activable fluorescent probes in live primary microglial cells with pK values ranging from ∼3.2-6.0. We introduce a structure-organelle-relationship (SOR) framework to target nuclei (NucShine), lysosomes (LysoShine), and mitochondria (MitoShine) in live microglia. This work will result in future applications of SOR beyond imaging to target and control organelle-specific biochemical processes in disease-specific models.

摘要

靶向活细胞细胞器对于成像、理解和控制特定生化过程至关重要。通常,使用具有独特结构支架的荧光探针来靶向特定的细胞细胞器。在这里,我们设计了一种使用通用反应中间体的模块化一步合成策略,开发了基于单个硼二吡咯甲烷支架的新型溶酶体、线粒体和核靶向 pH 激活荧光探针。通过对中心支架进行特定的官能团改变来合成探针,从而实现了不同的细胞细胞器靶向,这导致了荧光和 pK 的差异。具体来说,我们表明,同一支架的官能团转化会影响具有约 3.2-6.0 的 pK 值的活原代小神经胶质细胞中 pH 激活荧光探针的细胞定位和特异性。我们引入了一种结构-细胞器关系 (SOR) 框架,以在活小神经胶质细胞中靶向细胞核 (NucShine)、溶酶体 (LysoShine) 和线粒体 (MitoShine)。这项工作将导致 SOR 在成像之外的未来应用,以在疾病特异性模型中靶向和控制细胞器特异性生化过程。

相似文献

1
One Scaffold, Different Organelle Sensors: pH-Activable Fluorescent Probes for Targeting Live Microglial Cell Organelles.
Chembiochem. 2022 May 4;23(9):e202100378. doi: 10.1002/cbic.202100378. Epub 2021 Oct 13.
2
Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles.
Acc Chem Res. 2016 Oct 18;49(10):2115-2126. doi: 10.1021/acs.accounts.6b00292. Epub 2016 Sep 23.
3
Modular development of organelle-targeting fluorescent probes for imaging formaldehyde in live cells.
Anal Methods. 2024 Jun 13;16(23):3646-3653. doi: 10.1039/d4ay00360h.
5
Ratiometric fluorescent probes for pH mapping in cellular organelles.
Analyst. 2023 Sep 11;148(18):4242-4262. doi: 10.1039/d3an00960b.
6
Targeted Solvatochromic Fluorescent Probes for Imaging Lipid Order in Organelles under Oxidative and Mechanical Stress.
J Am Chem Soc. 2021 Jan 20;143(2):912-924. doi: 10.1021/jacs.0c10972. Epub 2021 Jan 8.
7
Tuning the pK of two-photon bis-chromophoric probes for ratiometric fluorescence imaging of acidic pH in lysosomes.
Talanta. 2019 Sep 1;202:34-41. doi: 10.1016/j.talanta.2019.04.042. Epub 2019 Apr 25.
9
Quantitative Chemical Imaging of Organelles.
Acc Chem Res. 2024 Jul 16;57(14):1906-1917. doi: 10.1021/acs.accounts.4c00191. Epub 2024 Jun 25.

引用本文的文献

2
Mitochondrial Targeting and Imaging with Small Organic Conjugated Fluorophores: A Review.
Chemistry. 2022 Dec 27;28(72):e202202366. doi: 10.1002/chem.202202366. Epub 2022 Oct 26.

本文引用的文献

1
A Mitochondria-Targeted Ratiometric Fluorescent pH Probe.
ACS Appl Bio Mater. 2019 Mar 18;2(3):1368-1375. doi: 10.1021/acsabm.9b00061. Epub 2019 Mar 7.
2
Monitoring phagocytic uptake of amyloid β into glial cell lysosomes in real time.
Chem Sci. 2021 Jul 21;12(32):10901-10918. doi: 10.1039/d1sc03486c. eCollection 2021 Aug 18.
3
pH-Activatable Cyanine Dyes for Selective Tumor Imaging Using Near-Infrared Fluorescence and Photoacoustic Modalities.
ACS Sens. 2021 Jan 22;6(1):123-129. doi: 10.1021/acssensors.0c01926. Epub 2020 Dec 17.
4
A rhodamine B-based lysosomal pH probe.
J Mater Chem B. 2015 Feb 7;3(5):919-925. doi: 10.1039/c4tb01763c. Epub 2014 Dec 8.
5
MitoBlue as a tool to analyze the mitochondria-lysosome communication.
Sci Rep. 2020 Feb 26;10(1):3528. doi: 10.1038/s41598-020-60573-7.
6
Mitochondria-Lysosome Crosstalk: From Physiology to Neurodegeneration.
Trends Mol Med. 2020 Jan;26(1):71-88. doi: 10.1016/j.molmed.2019.10.009. Epub 2019 Nov 29.
7
Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration.
Nat Neurosci. 2019 Oct;22(10):1635-1648. doi: 10.1038/s41593-019-0486-0. Epub 2019 Sep 23.
8
Fluorescent probes for organelle-targeted bioactive species imaging.
Chem Sci. 2019 May 24;10(24):6035-6071. doi: 10.1039/c9sc01652j. eCollection 2019 Jun 28.
9
Coumarin-Based Small-Molecule Fluorescent Chemosensors.
Chem Rev. 2019 Sep 25;119(18):10403-10519. doi: 10.1021/acs.chemrev.9b00145. Epub 2019 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验