Suppr超能文献

元分析中随机化后变量的处理:联合元回归方法。

Accounting for post-randomization variables in meta-analysis: A joint meta-regression approach.

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota.

Department of Epidemiology and Biostatistics, University of Maryland, College Park, Maryland.

出版信息

Biometrics. 2023 Mar;79(1):358-367. doi: 10.1111/biom.13573. Epub 2021 Nov 10.

Abstract

Meta-regression is widely used in systematic reviews to investigate sources of heterogeneity and the association of study-level covariates with treatment effectiveness. Existing meta-regression approaches are successful in adjusting for baseline covariates, which include real study-level covariates (e.g., publication year) that are invariant within a study and aggregated baseline covariates (e.g., mean age) that differ for each participant but are measured before randomization within a study. However, these methods have several limitations in adjusting for post-randomization variables. Although post-randomization variables share a handful of similarities with baseline covariates, they differ in several aspects. First, baseline covariates can be aggregated at the study level presumably because they are assumed to be balanced by the randomization, while post-randomization variables are not balanced across arms within a study and are commonly aggregated at the arm level. Second, post-randomization variables may interact dynamically with the primary outcome. Third, unlike baseline covariates, post-randomization variables are themselves often important outcomes under investigation. In light of these differences, we propose a Bayesian joint meta-regression approach adjusting for post-randomization variables. The proposed method simultaneously estimates the treatment effect on the primary outcome and on the post-randomization variables. It takes into consideration both between- and within-study variability in post-randomization variables. Studies with missing data in either the primary outcome or the post-randomization variables are included in the joint model to improve estimation. Our method is evaluated by simulations and a real meta-analysis of major depression disorder treatments.

摘要

元回归在系统评价中被广泛用于研究异质性的来源以及研究水平协变量与治疗效果的关系。现有的元回归方法在调整基线协变量方面是成功的,这些协变量包括真实的研究水平协变量(例如,出版年份),这些协变量在一个研究中是不变的,以及聚合的基线协变量(例如,平均年龄),这些协变量在每个参与者中是不同的,但在研究中是在随机化之前测量的。然而,这些方法在调整随机化后变量方面存在一些局限性。尽管随机化后变量与基线协变量有一些相似之处,但它们在几个方面有所不同。首先,基线协变量可以在研究水平上聚合,因为它们被假定通过随机化而平衡,而随机化后变量在研究内的不同臂之间是不平衡的,并且通常在臂水平上聚合。其次,随机化后变量可能与主要结局动态相互作用。第三,与基线协变量不同,随机化后变量本身通常也是正在研究的重要结局。鉴于这些差异,我们提出了一种调整随机化后变量的贝叶斯联合元回归方法。该方法同时估计了主要结局和随机化后变量上的治疗效果。它考虑了随机化后变量的组间和组内变异性。包括主要结局或随机化后变量缺失的研究被纳入联合模型中,以提高估计的准确性。我们的方法通过模拟和对重度抑郁症治疗的真实元分析进行了评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74c/8960477/5565d60e59bf/nihms-1743918-f0001.jpg

相似文献

10
Balanced covariates with response adaptive randomization.具有响应自适应随机化的平衡协变量。
Pharm Stat. 2017 May;16(3):210-217. doi: 10.1002/pst.1803. Epub 2017 Mar 6.

本文引用的文献

8
Meta-analysis of studies with missing data.对存在缺失数据的研究进行的荟萃分析。
Biometrics. 2009 Jun;65(2):487-96. doi: 10.1111/j.1541-0420.2008.01068.x. Epub 2008 May 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验