Suppr超能文献

DXplorer:一个使用3D形态特征进行交互式树突棘分析的统一可视化框架。

DXplorer: A Unified Visualization Framework for Interactive Dendritic Spine Analysis Using 3D Morphological Features.

作者信息

Choi JunYoung, Lee Sang-Eun, Lee YeIn, Cho Eunji, Chang Sunghoe, Jeong Won-Ki

出版信息

IEEE Trans Vis Comput Graph. 2023 Feb;29(2):1424-1437. doi: 10.1109/TVCG.2021.3116656. Epub 2022 Dec 29.

Abstract

Dendritic spines are dynamic, submicron-scale protrusions on neuronal dendrites that receive neuronal inputs. Morphological changes in the dendritic spine often reflect alterations in physiological conditions and are indicators of various neuropsychiatric conditions. However, owing to the highly dynamic and heterogeneous nature of spines, accurate measurement and objective analysis of spine morphology are major challenges in neuroscience research. Most conventional approaches for analyzing dendritic spines are based on two-dimensional (2D) images, which barely reflect the actual three-dimensional (3D) shapes. Although some recent studies have attempted to analyze spines with various 3D-based features, it is still difficult to objectively categorize and analyze spines based on 3D morphology. Here, we propose a unified visualization framework for an interactive 3D dendritic spine analysis system, DXplorer, that displays 3D rendering of spines and plots the high-dimensional features extracted from the 3D mesh of spines. With this system, users can perform the clustering of spines interactively and explore and analyze dendritic spines based on high-dimensional features. We propose a series of high-dimensional morphological features extracted from a 3D mesh of dendritic spines. In addition, an interactive machine learning classifier with visual exploration and user feedback using an interactive 3D mesh grid view ensures a more precise classification based on the spine phenotype. A user study and two case studies were conducted to quantitatively verify the performance and usability of the DXplorer. We demonstrate that the system performs the entire analytic process effectively and provides high-quality, accurate, and objective analysis.

摘要

树突棘是神经元树突上动态的亚微米级突起,用于接收神经元输入。树突棘的形态变化通常反映生理状况的改变,是各种神经精神疾病的指标。然而,由于树突棘具有高度动态和异质性,对树突棘形态进行准确测量和客观分析是神经科学研究中的主要挑战。大多数分析树突棘的传统方法基于二维(2D)图像,几乎无法反映实际的三维(3D)形状。尽管最近一些研究试图利用各种基于3D的特征来分析树突棘,但基于3D形态对树突棘进行客观分类和分析仍然很困难。在此,我们提出了一个用于交互式3D树突棘分析系统DXplorer的统一可视化框架,该系统能显示树突棘的3D渲染图,并绘制从树突棘的3D网格中提取的高维特征。借助该系统,用户可以交互式地对树突棘进行聚类,并基于高维特征探索和分析树突棘。我们提出了一系列从树突棘的3D网格中提取的高维形态特征。此外,一个具有视觉探索功能和用户反馈的交互式机器学习分类器,通过交互式3D网格视图确保基于树突棘表型进行更精确的分类。我们进行了一项用户研究和两个案例研究,以定量验证DXplorer的性能和可用性。我们证明该系统能有效地执行整个分析过程,并提供高质量、准确和客观的分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验