Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; National Key Laboratory of Biomacromolecules, CAS Center for Biological Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
Biochem Biophys Res Commun. 2021 Nov 19;579:69-75. doi: 10.1016/j.bbrc.2021.09.053. Epub 2021 Sep 23.
N-glycosylation plays an important role in the pathogenesis of viral infections. However, the role of SARS-CoV-2 RBD N-glycosylation in viral entry remains elusive. In this study, we expressed and purified N331 and N343 N-glycosite mutants of SARS-CoV-2 RBD. We found that de-glycosylation at N331 and N343 drastically reduces the RBD binding to ACE2. More importantly, based on qualitative and quantitative virology research methods, we show that the mutation of RBD N-glycosites interfered with SARS-CoV-2 internalization rather than attachment potentially by decreasing RBD binding to the receptors. Also, the double N-glycosites mutant (N331 + N343) showed significantly increased sensitivity against the designated RBD neutralizing antibodies. Taken together, these results suggest that N-glycosylation of SARS-CoV-2 RBD is not only critical for viral internalization into respiratory epithelial cells but also shields the virus from neutralization. It may provide new insights into the biological process of early-stage SARS-CoV-2 infection with potential therapeutic implications.
N-糖基化在病毒感染的发病机制中起着重要作用。然而,SARS-CoV-2 RBD N-糖基化在病毒进入细胞中的作用仍不清楚。在本研究中,我们表达和纯化了 SARS-CoV-2 RBD 的 N331 和 N343 N-糖基位点突变体。我们发现 N331 和 N343 的去糖基化极大地降低了 RBD 与 ACE2 的结合。更重要的是,基于定性和定量病毒学研究方法,我们表明 RBD N-糖基化位点的突变干扰了 SARS-CoV-2 的内化,而不是通过降低 RBD 与受体的结合来干扰附着。此外,双 N-糖基化位点突变体(N331+N343)对指定的 RBD 中和抗体表现出显著增加的敏感性。总之,这些结果表明,SARS-CoV-2 RBD 的 N-糖基化不仅对病毒进入呼吸道上皮细胞至关重要,而且还能保护病毒免受中和。这可能为 SARS-CoV-2 早期感染的生物学过程提供新的见解,并具有潜在的治疗意义。