Suppr超能文献

儿科医务人员从电子健康记录审核日志中学习的任务。

Learning Tasks of Pediatric Providers from Electronic Health Record Audit Logs.

机构信息

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

AMIA Annu Symp Proc. 2021 Jan 25;2020:612-618. eCollection 2020.

Abstract

The amount of time spent working in the Electronic Health Record (EHR) has become a burden for many providers. We propose computational methods to learn EHR tasks of Pediatrics residents and attending physicians in the treatment of healthy newborns by analyzing EHR audit log data. We perform statistical analyses of the association between EHR events and provider role, leverage word embedding, k-means, and ProM process mining software on audit log data to learn EHR tasks and visualize them. Residents more commonly perform note preparation and result viewing relative to attendings. Attendings perform more communication and chart review. Task workflows analysis resulted in 2 tasks for attendings and 3 tasks for residents. The attending tasks focus on chart review patient report and history, and inbox service. Primary themes for residents are admit/discharge with order creation, note review, and result review.

摘要

在电子健康记录 (EHR) 中花费的工作时间已成为许多提供者的负担。我们通过分析 EHR 审核日志数据,提出了计算方法来学习儿科住院医师和主治医生在治疗健康新生儿方面的 EHR 任务。我们对 EHR 事件与提供者角色之间的关联进行了统计分析,利用词嵌入、k-均值和 ProM 流程挖掘软件对审核日志数据进行分析,以学习 EHR 任务并对其进行可视化。住院医师比主治医生更常执行医嘱准备和结果查看任务。主治医生则更多地执行沟通和图表审查任务。任务工作流程分析得出主治医生有 2 项任务,住院医师有 3 项任务。主治医生的任务重点是图表审查患者报告和病史,以及收件箱服务。住院医师的主要任务是创建医嘱的入院/出院、医嘱审查和结果审查。

相似文献

引用本文的文献

本文引用的文献

10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验