Suppr超能文献

优化耐药性高血压的识别:可计算表型的开发和验证。

Optimizing identification of resistant hypertension: Computable phenotype development and validation.

机构信息

Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA.

Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2020 Nov;29(11):1393-1401. doi: 10.1002/pds.5095. Epub 2020 Aug 26.

Abstract

PURPOSE

Computable phenotypes are constructed to utilize data within the electronic health record (EHR) to identify patients with specific characteristics; a necessary step for researching a complex disease state. We developed computable phenotypes for resistant hypertension (RHTN) and stable controlled hypertension (HTN) based on the National Patient-Centered Clinical Research Network (PCORnet) common data model (CDM). The computable phenotypes were validated through manual chart review.

METHODS

We adapted and refined existing computable phenotype algorithms for RHTN and stable controlled HTN to the PCORnet CDM in an adult HTN population from the OneFlorida Clinical Research Consortium (2015-2017). Two independent reviewers validated the computable phenotypes through manual chart review of 425 patient records. We assessed precision of our computable phenotypes through positive predictive value (PPV) and test validity through interrater reliability (IRR).

RESULTS

Among the 156 730 HTN patients in our final dataset, the final computable phenotype algorithms identified 24 926 patients with RHTN and 19 100 with stable controlled HTN. The PPV for RHTN in patients randomly selected for validation of the final algorithm was 99.1% (n = 113, CI: 95.2%-99.9%). The PPV for stable controlled HTN in patients randomly selected for validation of the final algorithm was 96.5% (n = 113, CI: 91.2%-99.0%). IRR analysis revealed a raw percent agreement of 91% (152/167) with Cohen's kappa statistic = 0.87.

CONCLUSIONS

We constructed and validated a RHTN computable phenotype algorithm and a stable controlled HTN computable phenotype algorithm. Both algorithms are based on the PCORnet CDM, allowing for future application to epidemiological and drug utilization based research.

摘要

目的

可计算表型是利用电子健康记录 (EHR) 中的数据构建的,用于识别具有特定特征的患者;这是研究复杂疾病状态的必要步骤。我们基于国家以患者为中心的临床研究网络 (PCORnet) 通用数据模型 (CDM) 为耐药性高血压 (RHTN) 和稳定控制的高血压 (HTN) 构建了可计算表型。通过手动图表审查验证了可计算表型。

方法

我们改编并改进了现有的 RHTN 和稳定控制 HTN 的可计算表型算法,以适应成人 HTN 人群的 PCORnet CDM,该人群来自 OneFlorida 临床研究联盟 (2015-2017 年)。两名独立的审查员通过对 425 份患者记录的手动图表审查验证了可计算表型。我们通过阳性预测值 (PPV) 评估了我们的可计算表型的精度,并通过组内相关系数 (IRR) 评估了测试的有效性。

结果

在我们最终数据集的 156730 名 HTN 患者中,最终的可计算表型算法确定了 24926 名 RHTN 患者和 19100 名稳定控制 HTN 患者。最终算法随机选择的用于验证的患者中 RHTN 的 PPV 为 99.1%(n=113,CI:95.2%-99.9%)。最终算法随机选择的用于验证的患者中稳定控制 HTN 的 PPV 为 96.5%(n=113,CI:91.2%-99.0%)。IRR 分析显示原始百分比一致性为 91%(152/167),Cohen's kappa 统计量=0.87。

结论

我们构建并验证了 RHTN 可计算表型算法和稳定控制 HTN 可计算表型算法。这两种算法都基于 PCORnet CDM,允许将来应用于基于流行病学和药物利用的研究。

相似文献

1
Optimizing identification of resistant hypertension: Computable phenotype development and validation.
Pharmacoepidemiol Drug Saf. 2020 Nov;29(11):1393-1401. doi: 10.1002/pds.5095. Epub 2020 Aug 26.
7
Identification and Validation of a Sickle Cell Disease Cohort Within Electronic Health Records.
Acad Pediatr. 2017 Apr;17(3):283-287. doi: 10.1016/j.acap.2016.12.005. Epub 2016 Dec 13.
8
9
Optimizing research in symptomatic uterine fibroids with development of a computable phenotype for use with electronic health records.
Am J Obstet Gynecol. 2018 Jun;218(6):610.e1-610.e7. doi: 10.1016/j.ajog.2018.02.002. Epub 2018 Feb 9.

引用本文的文献

4
Develop and validate a computable phenotype for the identification of Alzheimer's disease patients using electronic health record data.
Alzheimers Dement (Amst). 2024 Jul 3;16(3):e12613. doi: 10.1002/dad2.12613. eCollection 2024 Jul-Sep.
6
Developing a computable phenotype for glioblastoma.
Neuro Oncol. 2024 Jun 3;26(6):1163-1170. doi: 10.1093/neuonc/noad249.
9
A flexible symbolic regression method for constructing interpretable clinical prediction models.
NPJ Digit Med. 2023 Jun 5;6(1):107. doi: 10.1038/s41746-023-00833-8.

本文引用的文献

1
The PCORnet Blood Pressure Control Laboratory: A Platform for Surveillance and Efficient Trials.
Circ Cardiovasc Qual Outcomes. 2020 Mar;13(3):e006115. doi: 10.1161/CIRCOUTCOMES.119.006115. Epub 2020 Mar 6.
3
Prevalence of Apparent Treatment-Resistant Hypertension in the United States.
Hypertension. 2019 Feb;73(2):424-431. doi: 10.1161/HYPERTENSIONAHA.118.12191.
7
Association Between Adherence to Pharmacotherapy and Outcomes in Type 2 Diabetes: A Meta-analysis.
Diabetes Care. 2017 Nov;40(11):1588-1596. doi: 10.2337/dc16-1925. Epub 2017 Aug 11.
8
Impact of Medication Adherence on the Effect of Renal Denervation: The SYMPATHY Trial.
Hypertension. 2017 Apr;69(4):678-684. doi: 10.1161/HYPERTENSIONAHA.116.08818.
9
Genome-wide study of resistant hypertension identified from electronic health records.
PLoS One. 2017 Feb 21;12(2):e0171745. doi: 10.1371/journal.pone.0171745. eCollection 2017.
10
Renal denervation for resistant hypertension.
Cochrane Database Syst Rev. 2017 Feb 21;2(2):CD011499. doi: 10.1002/14651858.CD011499.pub2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验