Suppr超能文献

利用无人机遥感和纵向模型参数对大豆生物量进行基因组预测建模。

Genomic prediction modeling of soybean biomass using UAV-based remote sensing and longitudinal model parameters.

作者信息

Toda Yusuke, Kaga Akito, Kajiya-Kanegae Hiromi, Hattori Tomohiro, Yamaoka Shuhei, Okamoto Masanori, Tsujimoto Hisashi, Iwata Hiroyoshi

机构信息

Graduate School of Agricultural and Life Sciences, The Univ. of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.

Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.

出版信息

Plant Genome. 2021 Nov;14(3):e20157. doi: 10.1002/tpg2.20157. Epub 2021 Sep 30.

Abstract

The application of remote sensing in plant breeding can provide rich information about the growth processes of plants, which leads to better understanding concerning crop yield. It has been shown that traits measured by remote sensing were also beneficial for genomic prediction (GP) because the inclusion of remote sensing data in multitrait models improved prediction accuracies of target traits. However, the present multitrait GP model cannot incorporate high-dimensional remote sensing data due to the difficulty in the estimation of a covariance matrix among the traits, which leads to failure in improving its prediction accuracy. In this study, we focused on growth models to express growth patterns using remote sensing data with a few parameters and investigated whether a multitrait GP model using these parameters could derive better prediction accuracy of soybean [Glycine max (L.) Merr.] biomass. A total of 198 genotypes of soybean germplasm were cultivated in experimental fields, and longitudinal changes of their canopy height and area were measured continuously via remote sensing with an unmanned aerial vehicle. Growth parameters were estimated by applying simple growth models and incorporated into the GP of biomass. By evaluating heritability and correlation, we showed that the estimated growth parameters appropriately represented the observed growth curves. Also, the use of these growth parameters in the multitrait GP model contributed to successful biomass prediction. We conclude that the growth models could describe the genetic variation of soybean growth curves based on several growth parameters. These dimension-reduction growth models will be indispensable for extracting useful information from remote sensing data and using this data in GP and plant breeding.

摘要

遥感技术在植物育种中的应用能够提供有关植物生长过程的丰富信息,这有助于更好地了解作物产量。研究表明,通过遥感测量的性状对基因组预测(GP)也有益处,因为在多性状模型中纳入遥感数据可提高目标性状的预测准确性。然而,由于难以估计性状间的协方差矩阵,目前的多性状GP模型无法纳入高维遥感数据,这导致其预测准确性无法提高。在本研究中,我们聚焦于利用少量参数的遥感数据来表达生长模式的生长模型,并研究使用这些参数的多性状GP模型是否能获得更好的大豆[Glycine max (L.) Merr.]生物量预测准确性。在试验田中种植了总共198个大豆种质基因型,并通过无人机遥感连续测量其冠层高度和面积的纵向变化。通过应用简单生长模型估计生长参数,并将其纳入生物量的GP中。通过评估遗传力和相关性,我们表明估计的生长参数能够恰当地代表观测到的生长曲线。此外,在多性状GP模型中使用这些生长参数有助于成功预测生物量。我们得出结论,生长模型可以基于几个生长参数描述大豆生长曲线的遗传变异。这些降维生长模型对于从遥感数据中提取有用信息并将其用于GP和植物育种将是不可或缺的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验