Suppr超能文献

利用多组学策略和生物信息学创新推动大豆改良:综述

Harnessing Multi-Omics Strategies and Bioinformatics Innovations for Advancing Soybean Improvement: A Comprehensive Review.

作者信息

Haidar Siwar, Hooker Julia, Lackey Simon, Elian Mohamad, Puchacz Nathalie, Szczyglowski Krzysztof, Marsolais Frédéric, Golshani Ashkan, Cober Elroy R, Samanfar Bahram

机构信息

Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada.

Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.

出版信息

Plants (Basel). 2024 Sep 28;13(19):2714. doi: 10.3390/plants13192714.

Abstract

Soybean improvement has entered a new era with the advent of multi-omics strategies and bioinformatics innovations, enabling more precise and efficient breeding practices. This comprehensive review examines the application of multi-omics approaches in soybean-encompassing genomics, transcriptomics, proteomics, metabolomics, epigenomics, and phenomics. We first explore pre-breeding and genomic selection as tools that have laid the groundwork for advanced trait improvement. Subsequently, we dig into the specific contributions of each -omics field, highlighting how bioinformatics tools and resources have facilitated the generation and integration of multifaceted data. The review emphasizes the power of integrating multi-omics datasets to elucidate complex traits and drive the development of superior soybean cultivars. Emerging trends, including novel computational techniques and high-throughput technologies, are discussed in the context of their potential to revolutionize soybean breeding. Finally, we address the challenges associated with multi-omics integration and propose future directions to overcome these hurdles, aiming to accelerate the pace of soybean improvement. This review serves as a crucial resource for researchers and breeders seeking to leverage multi-omics strategies for enhanced soybean productivity and resilience.

摘要

随着多组学策略和生物信息学创新的出现,大豆改良进入了一个新时代,使育种实践更加精确和高效。这篇综述全面考察了多组学方法在大豆中的应用,涵盖基因组学、转录组学、蛋白质组学、代谢组学、表观基因组学和表型组学。我们首先探讨了预育种和基因组选择作为为先进性状改良奠定基础的工具。随后,我们深入研究了每个组学领域的具体贡献,强调了生物信息学工具和资源如何促进多方面数据的生成和整合。该综述强调了整合多组学数据集以阐明复杂性状和推动优良大豆品种开发的作用。在其有可能彻底改变大豆育种的背景下,讨论了包括新型计算技术和高通量技术在内的新兴趋势。最后,我们阐述了与多组学整合相关的挑战,并提出了克服这些障碍的未来方向,旨在加快大豆改良的步伐。这篇综述为寻求利用多组学策略提高大豆生产力和抗逆性的研究人员和育种者提供了重要资源。

相似文献

2
Multi-Omics Techniques for Soybean Molecular Breeding.
Int J Mol Sci. 2022 Apr 30;23(9):4994. doi: 10.3390/ijms23094994.
3
Applications of Multi-Omics Technologies for Crop Improvement.
Front Plant Sci. 2021 Sep 3;12:563953. doi: 10.3389/fpls.2021.563953. eCollection 2021.
4
Kiwifruit in the Omics Age: Advances in Genomics, Breeding, and Beyond.
Plants (Basel). 2024 Aug 3;13(15):2156. doi: 10.3390/plants13152156.
5
Holomics - a user-friendly R shiny application for multi-omics data integration and analysis.
BMC Bioinformatics. 2024 Mar 4;25(1):93. doi: 10.1186/s12859-024-05719-4.
6
Multi-omics assisted breeding for biotic stress resistance in soybean.
Mol Biol Rep. 2023 Apr;50(4):3787-3814. doi: 10.1007/s11033-023-08260-4. Epub 2023 Jan 24.
7
Applications of Omics Technology for Livestock Selection and Improvement.
Front Genet. 2022 Jun 2;13:774113. doi: 10.3389/fgene.2022.774113. eCollection 2022.
8
Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value.
Front Plant Sci. 2021 Dec 1;12:774994. doi: 10.3389/fpls.2021.774994. eCollection 2021.
10
Advances in Multi-Omics Approaches for Molecular Breeding of Black Rot Resistance in L.
Front Plant Sci. 2021 Dec 6;12:742553. doi: 10.3389/fpls.2021.742553. eCollection 2021.

引用本文的文献

1
CRISPR/Cas-Mediated Optimization of Soybean Shoot Architecture for Enhanced Yield.
Int J Mol Sci. 2025 Aug 16;26(16):7925. doi: 10.3390/ijms26167925.
2
Multi-omics approaches: transforming the landscape of natural product isolation.
Funct Integr Genomics. 2025 Jun 19;25(1):132. doi: 10.1007/s10142-025-01645-7.

本文引用的文献

4
Influence of Silver Nanoparticles on the Metabolites of Two Transgenic Soybean Varieties: An NMR-Based Metabolomics Approach.
J Agric Food Chem. 2024 May 29;72(21):12281-12294. doi: 10.1021/acs.jafc.4c00756. Epub 2024 May 15.
6
Genetic dissection of ten photosynthesis-related traits based on InDel- and SNP-GWAS in soybean.
Theor Appl Genet. 2024 Apr 8;137(5):96. doi: 10.1007/s00122-024-04607-y.
8
Multiomics Analyses Reveal the Dual Role of Flavonoids in Pigmentation and Abiotic Stress Tolerance of Soybean Seeds.
J Agric Food Chem. 2024 Feb 14;72(6):3231-3243. doi: 10.1021/acs.jafc.3c08202. Epub 2024 Feb 1.
9
Transcriptome-wide mA methylation profiling identifies GmAMT1;1 as a promoter of lead and cadmium tolerance in soybean nodules.
J Hazard Mater. 2024 Mar 5;465:133263. doi: 10.1016/j.jhazmat.2023.133263. Epub 2023 Dec 17.
10
SoyMD: a platform combining multi-omics data with various tools for soybean research and breeding.
Nucleic Acids Res. 2024 Jan 5;52(D1):D1639-D1650. doi: 10.1093/nar/gkad786.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验