Suppr超能文献

液核观测的气相交换 NMR 揭示水在蛋白质稳定性中的多变作用

Water's Variable Role in Protein Stability Uncovered by Liquid-Observed Vapor Exchange NMR.

机构信息

Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina 27599-3290, United States.

Department of Biochemistry & Biophysics, UNC-CH, Chapel Hill, North Carolina 27599, United States.

出版信息

Biochemistry. 2021 Oct 19;60(41):3041-3045. doi: 10.1021/acs.biochem.1c00552. Epub 2021 Oct 1.

Abstract

Water is essential to protein structure and stability, yet our understanding of how water shapes proteins is far from thorough. Our incomplete knowledge of protein-water interactions is due in part to a long-standing technological inability to assess experimentally how water removal impacts local protein structure. It is now possible to obtain residue-level information on dehydrated protein structures via liquid-observed vapor exchange (LOVE) NMR, a solution NMR technique that quantifies the extent of hydrogen-deuterium exchange between unprotected amide protons of a dehydrated protein and DO vapor. Here, we apply LOVE NMR, Fourier transform infrared spectroscopy, and solution hydrogen-deuterium exchange to globular proteins GB1, CI2, and two variants thereof to link mutation-induced changes in the dehydrated protein structure to changes in solution structure and stability. We find that a mutation that destabilizes GB1 in solution does not affect its dehydrated structure, whereas a mutation that stabilizes CI2 in solution makes several regions of the protein more susceptible to dehydration-induced unfolding, suggesting that water is primarily responsible for the destabilization of the GB1 variant but plays a stabilizing role in the CI2 variant. Our results indicate that changes in dehydrated protein structure cannot be predicted from changes in solution stability alone and demonstrate the ability of LOVE NMR to uncover the variable role of water in protein stability. Further application of LOVE NMR to other proteins and their variants will improve the ability to predict and modulate protein structure and stability in both the hydrated and dehydrated states for applications in medicine and biotechnology.

摘要

水对于蛋白质的结构和稳定性至关重要,但我们对水如何塑造蛋白质的理解还远远不够。我们对蛋白质-水相互作用的了解不完全部分是由于长期以来在技术上无法评估去除水对局部蛋白质结构的影响。现在,通过液观察蒸汽交换(LOVE)NMR 可以获得脱水蛋白质结构的残基水平信息,这是一种溶液 NMR 技术,可量化脱水蛋白质中未保护的酰胺质子与 DO 蒸汽之间的氢氘交换程度。在这里,我们应用 LOVE NMR、傅里叶变换红外光谱和溶液氢氘交换来研究球状蛋白质 GB1、CI2 及其两种变体,将突变引起的脱水蛋白质结构变化与溶液结构和稳定性变化联系起来。我们发现,使 GB1 在溶液中不稳定的突变不会影响其脱水结构,而使 CI2 在溶液中稳定的突变会使蛋白质的几个区域更容易受到脱水诱导的展开,这表明水主要负责 GB1 变体的失稳,但在 CI2 变体中起稳定作用。我们的结果表明,不能仅从溶液稳定性的变化来预测脱水蛋白质结构的变化,并证明 LOVE NMR 能够揭示水在蛋白质稳定性中的可变作用。进一步将 LOVE NMR 应用于其他蛋白质及其变体将提高在水合和脱水状态下预测和调节蛋白质结构和稳定性的能力,从而在医学和生物技术领域得到应用。

相似文献

5
Amide proton exchange of a dynamic loop in cell extracts.细胞提取物中环的酰胺质子交换。
Protein Sci. 2013 Oct;22(10):1313-9. doi: 10.1002/pro.2318. Epub 2013 Aug 20.
6
Impact of reconstituted cytosol on protein stability.复溶液对蛋白质稳定性的影响。
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19342-7. doi: 10.1073/pnas.1312678110. Epub 2013 Nov 11.

引用本文的文献

8
How Sugars Protect Dry Protein Structure.糖如何保护干燥蛋白质结构。
Biochemistry. 2023 Mar 7;62(5):1044-1052. doi: 10.1021/acs.biochem.2c00692. Epub 2023 Feb 18.

本文引用的文献

1
Protein folding - seeing is deceiving.蛋白质折叠——眼见未必为实。
Protein Sci. 2021 Aug;30(8):1606-1616. doi: 10.1002/pro.4096. Epub 2021 May 7.
3
Why Computed Protein Folding Landscapes Are Sensitive to the Water Model.为什么计算蛋白质折叠景观对水模型敏感。
J Chem Theory Comput. 2019 Jan 8;15(1):625-636. doi: 10.1021/acs.jctc.8b00485. Epub 2018 Dec 20.
4
Water Determines the Structure and Dynamics of Proteins.水决定蛋白质的结构与动力学。
Chem Rev. 2016 Jul 13;116(13):7673-97. doi: 10.1021/acs.chemrev.5b00664. Epub 2016 May 17.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验