University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands.
University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands.
Radiother Oncol. 2021 Nov;164:167-174. doi: 10.1016/j.radonc.2021.09.019. Epub 2021 Sep 28.
Accurate segmentation of organs-at-risk (OARs) is crucial but tedious and time-consuming in adaptive radiotherapy (ART). The purpose of this work was to automate head and neck OAR-segmentation on repeat CT (rCT) by an optimal combination of human and auto-segmentation for accurate prediction of Normal Tissue Complication Probability (NTCP).
Human segmentation (HS) of 3 observers, deformable image registration (DIR) based contour propagation and deep learning contouring (DLC) were carried out to segment 15 OARs on 15 rCTs. The original treatment plan was re-calculated on rCT to obtain mean dose (D) and consequent NTCP-predictions. The average D and NTCP-predictions of the three observers were referred to as the gold standard to calculate the absolute difference of D and NTCP-predictions (|ΔD| and |ΔNTCP|).
The average |ΔD| of parotid glands in HS was 1.40 Gy, lower than that obtained with DIR and DLC (3.64 Gy, p < 0.001 and 3.72 Gy, p < 0.001, respectively). DLC showed the highest |ΔD| in middle Pharyngeal Constrictor Muscle (PCM) (5.13 Gy, p = 0.01). DIR showed second highest |ΔD| in the cricopharyngeal inlet (2.85 Gy, p = 0.01). The semi auto-segmentation (SAS) adopted HS, DIR and DLC for segmentation of parotid glands, PCM and all other OARs, respectively. The 90th percentile |ΔNTCP|was 2.19%, 2.24%, 1.10% and 1.50% for DIR, DLC, HS and SAS respectively.
Human segmentation of the parotid glands remains necessary for accurate interpretation of mean dose and NTCP during ART. Proposed semi auto-segmentation allows NTCP-predictions within 1.5% accuracy for 90% of the cases.
在自适应放疗(ART)中,准确分割危及器官(OARs)至关重要,但却繁琐且耗时。本研究旨在通过人工分割和自动分割的最佳组合,实现对头颈部 OAR 进行重复 CT(rCT)自动分割,从而准确预测正常组织并发症概率(NTCP)。
对 15 例 rCT 进行了 3 名观察者的人工分割(HS)、基于形变图像配准的轮廓传播以及深度学习轮廓分割(DLC),以分割 15 个 OAR。rCT 上重新计算原始治疗计划以获得平均剂量(D)和后续的 NTCP 预测值。将 3 名观察者的平均 D 和 NTCP 预测值作为金标准,以计算 D 和 NTCP 预测值的绝对差值(|ΔD|和|ΔNTCP|)。
HS 中腮腺的平均 |ΔD|为 1.40Gy,低于 DIR 和 DLC 的测量值(分别为 3.64Gy,p<0.001 和 3.72Gy,p<0.001)。DLC 显示中咽缩肌(PCM)的 |ΔD|最高(5.13Gy,p=0.01)。DIR 显示环状软骨入口的 |ΔD|第二高(2.85Gy,p=0.01)。半自动分割(SAS)分别采用 HS、DIR 和 DLC 进行腮腺、PCM 和所有其他 OAR 的分割。90%分位数 |ΔNTCP|分别为 DIR、DLC、HS 和 SAS 的 2.19%、2.24%、1.10%和 1.50%。
在 ART 中,人工分割腮腺对于准确解释平均剂量和 NTCP 仍然是必要的。提出的半自动分割可以在 90%的情况下以 1.5%的精度预测 NTCP。