Suppr超能文献

深度学习勾画技术对头颈部危险器官自动勾画的改善。

Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring.

机构信息

Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands.

Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands.

出版信息

Radiother Oncol. 2020 Jan;142:115-123. doi: 10.1016/j.radonc.2019.09.022. Epub 2019 Oct 22.

Abstract

INTRODUCTION

Adequate head and neck (HN) organ-at-risk (OAR) delineation is crucial for HN radiotherapy and for investigating the relationships between radiation dose to OARs and radiation-induced side effects. The automatic contouring algorithms that are currently in clinical use, such as atlas-based contouring (ABAS), leave room for improvement. The aim of this study was to use a comprehensive evaluation methodology to investigate the performance of HN OAR auto-contouring when using deep learning contouring (DLC), compared to ABAS.

METHODS

The DLC neural network was trained on 589 HN cancer patients. DLC was compared to ABAS by providing each method with an independent validation cohort of 104 patients, which had also been manually contoured. For each of the 22 OAR contours - glandular, upper digestive tract and central nervous system (CNS)-related structures - the dice similarity coefficient (DICE), and absolute mean and max dose differences (|Δmean-dose| and |Δmax-dose|) performance measures were obtained. For a subset of 7 OARs, an evaluation of contouring time, inter-observer variation and subjective judgement was performed.

RESULTS

DLC resulted in equal or significantly improved quantitative performance measures in 19 out of 22 OARs, compared to the ABAS (DICE/|Δmean dose|/|Δmax dose|: 0.59/4.2/4.1 Gy (ABAS); 0.74/1.1/0.8 Gy (DLC)). The improvements were mainly for the glandular and upper digestive tract OARs. DLC significantly reduced the delineation time for the inexperienced observer. The subjective evaluation showed that DLC contours were more often preferable to the ABAS contours overall, were considered to be more precise, and more often confused with manual contours. Manual contours still outperformed both DLC and ABAS; however, DLC results were within or bordering the inter-observer variability for the manual edited contours in this cohort.

CONCLUSION

The DLC, trained on a large HN cancer patient cohort, outperformed the ABAS for the majority of HN OARs.

摘要

介绍

对头颈部(HN)器官危及器官(OAR)的充分勾画对于 HN 放疗以及研究 OAR 接受的辐射剂量与辐射诱导的副作用之间的关系至关重要。目前临床使用的自动勾画算法,如基于图谱的勾画(ABAS),仍有改进的空间。本研究旨在使用全面的评估方法,研究使用深度学习勾画(DLC)时与 ABAS 相比,HN OAR 自动勾画的性能。

方法

在 589 例 HN 癌症患者中对 DLC 神经网络进行训练。通过将每个方法提供给一个独立的验证队列(104 例患者,这些患者也经过了手动勾画),来比较 DLC 与 ABAS。对于 22 个 OAR 轮廓 - 腺体、上消化道和中枢神经系统(CNS)相关结构 - 获得了 DICE 相似系数(DICE)以及绝对平均和最大剂量差异(|Δmean-dose|和|Δmax-dose|)性能指标。对于 7 个 OAR 的子集,进行了勾画时间、观察者间变异和主观判断的评估。

结果

与 ABAS 相比,DLC 在 22 个 OAR 中的 19 个 OAR 中得到了同等或显著改善的定量性能指标(DICE/|Δmean dose|/|Δmax dose|:0.59/4.2/4.1 Gy(ABAS);0.74/1.1/0.8 Gy(DLC))。这些改进主要针对腺体和上消化道 OAR。DLC 显著减少了经验不足观察者的勾画时间。主观评估显示,DLC 轮廓总体上比 ABAS 轮廓更受欢迎,被认为更精确,并且更经常与手动轮廓混淆。手动轮廓仍然优于 DLC 和 ABAS;然而,在这个队列中,DLC 结果处于或接近手动编辑轮廓的观察者间变异性。

结论

在大型 HN 癌症患者队列上进行训练的 DLC 在大多数 HN OAR 中优于 ABAS。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验