Suppr超能文献

基于相位滞后指数的图注意网络用于驾驶疲劳检测。

Phase lag index-based graph attention networks for detecting driving fatigue.

机构信息

School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China.

出版信息

Rev Sci Instrum. 2021 Sep 1;92(9):094105. doi: 10.1063/5.0056139.

Abstract

It is important to understand the changes in the characteristics of the brain network in the state of driving fatigue and to reveal the pattern of functional connectivity between brain regions when fatigue occurs. This paper proposes a method for the detection of driving fatigue based on electroencephalogram (EEG) signals using a phase lag index graph attention network (PLI-GAT). Phase synchronization between EEG signals is a key attribute for establishing communication links among different regions of the brain, and so, the PLI is used to construct a functional brain network reflecting the relationship between EEG signals from different channels. Multi-channel EEG time-frequency features are then modeled as graph data, and the driving fatigue monitoring model is trained using a GAT. Compared with traditional graph neural networks, the GAT applies an aggregation operation to adjacent EEG channel features through the attention mechanism. This enables the adaptive assignment of different neighbor weights, which greatly improves the expressiveness of the graph neural network model. The proposed method is validated on the publicly available SEED-VIG dataset, and the accuracy of fatigue state recognition is found to reach 85.53%. The results show that the functional connectivity among different channels is significantly enhanced in the fatigue state.

摘要

了解驾驶疲劳状态下大脑网络特征的变化,并揭示疲劳发生时脑区之间的功能连接模式非常重要。本文提出了一种基于脑电(EEG)信号的驾驶疲劳检测方法,该方法使用相位滞后指数图注意网络(PLI-GAT)。EEG 信号之间的相位同步是建立大脑不同区域之间通信链路的关键属性,因此,使用 PLI 构建反映来自不同通道的 EEG 信号之间关系的功能大脑网络。然后将多通道 EEG 时频特征建模为图数据,并使用 GAT 训练驾驶疲劳监测模型。与传统的图神经网络相比,GAT 通过注意力机制对相邻 EEG 通道特征应用聚合操作。这使得可以自适应地分配不同的邻居权重,从而极大地提高了图神经网络模型的表达能力。该方法在公开的 SEED-VIG 数据集上进行了验证,疲劳状态识别的准确率达到 85.53%。结果表明,在疲劳状态下,不同通道之间的功能连接显著增强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验