School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia.
School of Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia.
Sensors (Basel). 2023 Feb 21;23(5):2383. doi: 10.3390/s23052383.
This study examined the brain source space functional connectivity from the electroencephalogram (EEG) activity of 48 participants during a driving simulation experiment where they drove until fatigue developed. Source-space functional connectivity (FC) analysis is a state-of-the-art method for understanding connections between brain regions that may indicate psychological differences. Multi-band FC in the brain source space was constructed using the phased lag index (PLI) method and used as features to train an SVM classification model to classify driver fatigue and alert conditions. With a subset of critical connections in the beta band, a classification accuracy of 93% was achieved. Additionally, the source-space FC feature extractor demonstrated superiority over other methods, such as PSD and sensor-space FC, in classifying fatigue. The results suggested that source-space FC is a discriminative biomarker for detecting driving fatigue.
本研究通过对 48 名参与者在驾驶模拟实验中 EEG 活动的脑源空间功能连接进行了研究,参与者在实验中一直驾驶直至疲劳产生。源空间功能连接(FC)分析是一种理解大脑区域之间连接的先进方法,这些连接可能表明存在心理差异。使用相位滞后指数(PLI)方法构建了脑源空间中的多频带 FC,并将其用作特征来训练 SVM 分类模型,以分类驾驶员疲劳和警觉状态。在使用 beta 波段中的一组关键连接的情况下,实现了 93%的分类准确率。此外,与 PSD 和传感器空间 FC 等其他方法相比,源空间 FC 特征提取器在分类疲劳方面具有优势。研究结果表明,源空间 FC 是检测驾驶疲劳的一种有区分性的生物标志物。