Gao Dongrui, Wang Kejie, Wang Manqing, Zhou Jiliu, Zhang Yongqing
IEEE J Biomed Health Inform. 2024 Aug;28(8):4444-4455. doi: 10.1109/JBHI.2023.3285268. Epub 2024 Aug 6.
Fatigued driving is a leading cause of traffic accidents, and accurately predicting driver fatigue can significantly reduce their occurrence. However, modern fatigue detection models based on neural networks often face challenges such as poor interpretability and insufficient input feature dimensions. This article proposes a novel Spatial-Frequency-Temporal Network (SFT-Net) method for detecting driver fatigue using electroencephalogram (EEG) data. Our approach integrates EEG signals' spatial, frequency, and temporal information to improve recognition performance. We transform the differential entropy of five frequency bands of EEG signals into a 4D feature tensor to preserve these three types of information. An attention module is then used to recalibrate the spatial and frequency information of each input 4D feature tensor time slice. The output of this module is fed into a depthwise separable convolution (DSC) module, which extracts spatial and frequency features after attention fusion. Finally, long short-term memory (LSTM) is used to extract the temporal dependence of the sequence, and the final features are output through a linear layer. We validate the effectiveness of our model on the SEED-VIG dataset, and experimental results demonstrate that SFT-Net outperforms other popular models for EEG fatigue detection. Interpretability analysis supports the claim that our model has a certain level of interpretability. Our work addresses the challenge of detecting driver fatigue from EEG data and highlights the importance of integrating spatial, frequency, and temporal information.
疲劳驾驶是交通事故的主要原因之一,准确预测驾驶员疲劳可以显著减少事故的发生。然而,基于神经网络的现代疲劳检测模型常常面临诸如可解释性差和输入特征维度不足等挑战。本文提出了一种新颖的空间-频率-时间网络(SFT-Net)方法,用于利用脑电图(EEG)数据检测驾驶员疲劳。我们的方法整合了EEG信号的空间、频率和时间信息,以提高识别性能。我们将EEG信号五个频段的微分熵转换为一个4D特征张量,以保留这三种类型的信息。然后使用一个注意力模块对每个输入4D特征张量时间切片的空间和频率信息进行重新校准。该模块的输出被输入到一个深度可分离卷积(DSC)模块中,该模块在注意力融合后提取空间和频率特征。最后,使用长短期记忆(LSTM)提取序列的时间依赖性,并通过线性层输出最终特征。我们在SEED-VIG数据集上验证了我们模型的有效性,实验结果表明SFT-Net在EEG疲劳检测方面优于其他流行模型。可解释性分析支持我们的模型具有一定程度可解释性的观点。我们的工作解决了从EEG数据中检测驾驶员疲劳的挑战,并突出了整合空间、频率和时间信息的重要性。