Suppr超能文献

扫描特定的自监督贝叶斯深度非线性反转用于欠采样 MRI 重建。

Scan-Specific Self-Supervised Bayesian Deep Non-Linear Inversion for Undersampled MRI Reconstruction.

出版信息

IEEE Trans Med Imaging. 2024 Jun;43(6):2358-2369. doi: 10.1109/TMI.2024.3364911. Epub 2024 Jun 5.

Abstract

Magnetic resonance imaging is subject to slow acquisition times due to the inherent limitations in data sampling. Recently, supervised deep learning has emerged as a promising technique for reconstructing sub-sampled MRI. However, supervised deep learning requires a large dataset of fully-sampled data. Although unsupervised or self-supervised deep learning methods have emerged to address the limitations of supervised deep learning approaches, they still require a database of images. In contrast, scan-specific deep learning methods learn and reconstruct using only the sub-sampled data from a single scan. Here, we introduce Scan-Specific Self-Supervised Bayesian Deep Non-Linear Inversion (DNLINV) that does not require an auto calibration scan region. DNLINV utilizes a Deep Image Prior-type generative modeling approach and relies on approximate Bayesian inference to regularize the deep convolutional neural network. We demonstrate our approach on several anatomies, contrasts, and sampling patterns and show improved performance over existing approaches in scan-specific calibrationless parallel imaging and compressed sensing.

摘要

磁共振成像是由于数据采样的固有限制而导致采集时间缓慢。最近,监督深度学习已成为一种有前途的技术,可以对欠采样的 MRI 进行重建。然而,监督深度学习需要一个完全采样数据的大型数据集。尽管出现了无监督或自监督深度学习方法来解决监督深度学习方法的局限性,但它们仍然需要图像数据库。相比之下,特定于扫描的深度学习方法仅使用单个扫描的欠采样数据进行学习和重建。在这里,我们介绍了不需要自动校准扫描区域的特定于扫描的自监督贝叶斯深度非线性反转(DNLINV)。DNLINV 利用了深度图像先验类型的生成建模方法,并依赖于近似贝叶斯推断来正则化深度卷积神经网络。我们在几个解剖结构、对比度和采样模式上演示了我们的方法,并在特定于扫描的无校准并行成像和压缩感知方面展示了优于现有方法的性能。

相似文献

1
Scan-Specific Self-Supervised Bayesian Deep Non-Linear Inversion for Undersampled MRI Reconstruction.
IEEE Trans Med Imaging. 2024 Jun;43(6):2358-2369. doi: 10.1109/TMI.2024.3364911. Epub 2024 Jun 5.
2
Self-supervised learning for MRI reconstruction through mapping resampled k-space data to resampled k-space data.
Magn Reson Imaging. 2025 Sep;121:110404. doi: 10.1016/j.mri.2025.110404. Epub 2025 May 3.
4
SPICER: Self-supervised learning for MRI with automatic coil sensitivity estimation and reconstruction.
Magn Reson Med. 2024 Sep;92(3):1048-1063. doi: 10.1002/mrm.30121. Epub 2024 May 10.
5
6
Instance-Wise MRI Reconstruction Based on Self-Supervised Implicit Neural Representation.
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10781752.
7
Semi-Supervised Learning of MRI Synthesis Without Fully-Sampled Ground Truths.
IEEE Trans Med Imaging. 2022 Dec;41(12):3895-3906. doi: 10.1109/TMI.2022.3199155. Epub 2022 Dec 2.
9
Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data.
Magn Reson Med. 2020 Dec;84(6):3172-3191. doi: 10.1002/mrm.28378. Epub 2020 Jul 2.
10
Dual-domain self-supervised learning for accelerated non-Cartesian MRI reconstruction.
Med Image Anal. 2022 Oct;81:102538. doi: 10.1016/j.media.2022.102538. Epub 2022 Jul 18.

引用本文的文献

1
A hybrid deep image prior and compressed sensing reconstruction method for highly accelerated 3D coronary magnetic resonance angiography.
Front Cardiovasc Med. 2024 Sep 12;11:1408351. doi: 10.3389/fcvm.2024.1408351. eCollection 2024.
2
Complexities of deep learning-based undersampled MR image reconstruction.
Eur Radiol Exp. 2023 Oct 4;7(1):58. doi: 10.1186/s41747-023-00372-7.
3
An untrained deep learning method for reconstructing dynamic MR images from accelerated model-based data.
Magn Reson Med. 2023 Apr;89(4):1617-1633. doi: 10.1002/mrm.29547. Epub 2022 Dec 5.

本文引用的文献

1
Bayesian MRI reconstruction with joint uncertainty estimation using diffusion models.
Magn Reson Med. 2023 Jul;90(1):295-311. doi: 10.1002/mrm.29624. Epub 2023 Mar 13.
3
Deep J-Sense: Accelerated MRI Reconstruction via Unrolled Alternating Optimization.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12906:350-360. doi: 10.1007/978-3-030-87231-1_34. Epub 2021 Sep 21.
4
Compressed Sensing MRI with ℓ-Wavelet Reconstruction Revisited Using Modern Data Science Tools.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3596-3600. doi: 10.1109/EMBC46164.2021.9630985.
6
Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues.
IEEE Signal Process Mag. 2020 Jan;37(1):128-140. doi: 10.1109/MSP.2019.2950640. Epub 2020 Jan 20.
7
Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet Neural Networks.
IEEE Signal Process Mag. 2020 Jan;37(1):141-151. doi: 10.1109/MSP.2019.2950557. Epub 2020 Jan 20.
8
Linear Predictability in MRI Reconstruction: Leveraging Shift-Invariant Fourier Structure for Faster and Better Imaging.
IEEE Signal Process Mag. 2020 Jan;37(1):69-82. doi: 10.1109/msp.2019.2949570. Epub 2020 Jan 17.
9
CALIBRATIONLESS PARALLEL MRI USING MODEL BASED DEEP LEARNING (C-MODL).
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1428-1431. doi: 10.1109/isbi45749.2020.9098490. Epub 2020 May 22.
10
Deep Generalization of Structured Low-Rank Algorithms (Deep-SLR).
IEEE Trans Med Imaging. 2020 Dec;39(12):4186-4197. doi: 10.1109/TMI.2020.3014581. Epub 2020 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验