IEEE Trans Med Imaging. 2024 Jun;43(6):2358-2369. doi: 10.1109/TMI.2024.3364911. Epub 2024 Jun 5.
Magnetic resonance imaging is subject to slow acquisition times due to the inherent limitations in data sampling. Recently, supervised deep learning has emerged as a promising technique for reconstructing sub-sampled MRI. However, supervised deep learning requires a large dataset of fully-sampled data. Although unsupervised or self-supervised deep learning methods have emerged to address the limitations of supervised deep learning approaches, they still require a database of images. In contrast, scan-specific deep learning methods learn and reconstruct using only the sub-sampled data from a single scan. Here, we introduce Scan-Specific Self-Supervised Bayesian Deep Non-Linear Inversion (DNLINV) that does not require an auto calibration scan region. DNLINV utilizes a Deep Image Prior-type generative modeling approach and relies on approximate Bayesian inference to regularize the deep convolutional neural network. We demonstrate our approach on several anatomies, contrasts, and sampling patterns and show improved performance over existing approaches in scan-specific calibrationless parallel imaging and compressed sensing.
磁共振成像是由于数据采样的固有限制而导致采集时间缓慢。最近,监督深度学习已成为一种有前途的技术,可以对欠采样的 MRI 进行重建。然而,监督深度学习需要一个完全采样数据的大型数据集。尽管出现了无监督或自监督深度学习方法来解决监督深度学习方法的局限性,但它们仍然需要图像数据库。相比之下,特定于扫描的深度学习方法仅使用单个扫描的欠采样数据进行学习和重建。在这里,我们介绍了不需要自动校准扫描区域的特定于扫描的自监督贝叶斯深度非线性反转(DNLINV)。DNLINV 利用了深度图像先验类型的生成建模方法,并依赖于近似贝叶斯推断来正则化深度卷积神经网络。我们在几个解剖结构、对比度和采样模式上演示了我们的方法,并在特定于扫描的无校准并行成像和压缩感知方面展示了优于现有方法的性能。