Medical Research Team, Medical AI Co. Ltd., Seoul, South Korea.
Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon, South Korea.
Ann Noninvasive Electrocardiol. 2021 May;26(3):e12839. doi: 10.1111/anec.12839. Epub 2021 Mar 15.
The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography (ECG) for detecting electrolyte imbalance and validated its performance in a multicenter study.
This retrospective cohort study included two hospitals: 92,140 patients who underwent a laboratory electrolyte examination and an ECG within 30 min were included in this study. A DLM was developed using 83,449 ECGs of 48,356 patients; the internal validation included 12,091 ECGs of 12,091 patients. We conducted an external validation with 31,693 ECGs of 31,693 patients from another hospital, and the result was electrolyte imbalance detection. During internal, the area under the receiving operating characteristic curve (AUC) of a DLM using a 12-lead ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.945, 0.866, 0.944, 0.885, 0.905, and 0.901, respectively. The values during external validation of the AUC of hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.873, 0.857, 0.839, 0.856, 0.831, and 0.813 respectively. The DLM helped to visualize the important ECG region for detecting each electrolyte imbalance, and it showed how the P wave, QRS complex, or T wave differs in importance in detecting each electrolyte imbalance.
The proposed DLM demonstrated high performance in detecting electrolyte imbalance. These results suggest that a DLM can be used for detecting and monitoring electrolyte imbalance using ECG on a daily basis.
电解质失衡的检测和监测对于许多代谢性疾病的恰当管理至关重要;然而,目前尚无可靠且非侵入性的工具能够检测到这些失衡。在这项研究中,我们使用心电图(ECG)开发了一种深度学习模型(DLM),用于检测电解质失衡,并在一项多中心研究中验证了其性能。
这是一项回顾性队列研究,纳入了两家医院的数据:共纳入 92140 名在 30 分钟内进行了实验室电解质检查和心电图检查的患者。我们使用 83449 份来自 48356 名患者的心电图数据开发了一个 DLM,内部验证包括 12091 份来自 12091 名患者的心电图数据。我们使用来自另一家医院的 31693 份心电图数据进行了外部验证,结果为电解质失衡检测。在内部验证中,使用 12 导联心电图检测高钾血症、低钾血症、高钠血症、低钠血症、高钙血症和低钙血症的 DLM 的接收者操作特征曲线(AUC)面积分别为 0.945、0.866、0.944、0.885、0.905 和 0.901。外部验证中,AUC 分别为高钾血症、低钾血症、高钠血症、低钠血症、高钙血症和低钙血症的 0.873、0.857、0.839、0.856、0.831 和 0.813。该 DLM 有助于可视化检测每种电解质失衡的重要心电图区域,并展示了 P 波、QRS 复合体或 T 波在检测每种电解质失衡时的重要性差异。
所提出的 DLM 在检测电解质失衡方面表现出了较高的性能。这些结果表明,DLM 可用于基于心电图对电解质失衡进行日常检测和监测。