Suppr超能文献

区分口译类型:将复杂网络与认知复杂性相联系。

Differentiating Interpreting Types: Connecting Complex Networks to Cognitive Complexity.

作者信息

Lin Yumeng, Xu Duo, Liang Junying

机构信息

Department of Linguistics, Zhejiang University, Hangzhou, China.

School of Foreign Languages and Cultures, Nanjing Normal University, Nanjing, China.

出版信息

Front Psychol. 2021 Sep 17;12:590399. doi: 10.3389/fpsyg.2021.590399. eCollection 2021.

Abstract

Prominent interpreting models have illustrated different processing mechanisms of simultaneous interpreting and consecutive interpreting. Although great efforts have been made, a macroscopic examination into interpreting outputs is sparse. Since complex network is a powerful and feasible tool to capture the holistic features of language, the present study adopts this novel approach to investigate different properties of syntactic dependency networks based on simultaneous interpreting and consecutive interpreting outputs. Our results show that consecutive interpreting networks demonstrate higher degrees, higher clustering coefficients, and a more important role of function words among the central vertices than simultaneous interpreting networks. These findings suggest a better connectivity, better transitivity, and a lower degree of vocabulary richness in consecutive interpreting outputs. Our research provides an integrative framework for the understanding of underlying mechanisms in diverse interpreting types.

摘要

著名的口译模型已经阐明了同声传译和交替传译的不同处理机制。尽管已经付出了巨大努力,但对口译输出的宏观研究却很少。由于复杂网络是捕捉语言整体特征的强大且可行的工具,本研究采用这种新颖的方法来研究基于同声传译和交替传译输出的句法依存网络的不同属性。我们的结果表明,交替传译网络比同声传译网络具有更高的度、更高的聚类系数,并且功能词在中心顶点中发挥着更重要的作用。这些发现表明交替传译输出具有更好的连通性、更好的传递性以及更低的词汇丰富度。我们的研究为理解不同口译类型的潜在机制提供了一个综合框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3205/8484889/746d72ef7d1b/fpsyg-12-590399-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验