Novelli Leonardo, Lizier Joseph T
Centre for Complex Systems, Faculty of Engineering, University of Sydney, Sydney, Australia.
Netw Neurosci. 2021 Apr 27;5(2):373-404. doi: 10.1162/netn_a_00178. eCollection 2021.
Functional and effective networks inferred from time series are at the core of network neuroscience. Interpreting properties of these networks requires inferred network models to reflect key underlying structural features. However, even a few spurious links can severely distort network measures, posing a challenge for functional connectomes. We study the extent to which micro- and macroscopic properties of underlying networks can be inferred by algorithms based on mutual information and bivariate/multivariate transfer entropy. The validation is performed on two macaque connectomes and on synthetic networks with various topologies (regular lattice, small-world, random, scale-free, modular). Simulations are based on a neural mass model and on autoregressive dynamics (employing Gaussian estimators for direct comparison to functional connectivity and Granger causality). We find that multivariate transfer entropy captures key properties of all network structures for longer time series. Bivariate methods can achieve higher recall (sensitivity) for shorter time series but are unable to control false positives (lower specificity) as available data increases. This leads to overestimated clustering, small-world, and rich-club coefficients, underestimated shortest path lengths and hub centrality, and fattened degree distribution tails. Caution should therefore be used when interpreting network properties of functional connectomes obtained via correlation or pairwise statistical dependence measures, rather than more holistic (yet data-hungry) multivariate models.
从时间序列推断出的功能有效网络是网络神经科学的核心。解释这些网络的属性需要推断出的网络模型来反映关键的潜在结构特征。然而,即使是少量的虚假链接也会严重扭曲网络测量结果,给功能连接组带来挑战。我们研究了基于互信息和二元/多元转移熵的算法能够在多大程度上推断出基础网络的微观和宏观属性。在两个猕猴连接组以及具有各种拓扑结构(规则晶格、小世界、随机、无标度、模块化)的合成网络上进行了验证。模拟基于神经质量模型和自回归动力学(采用高斯估计器以便与功能连接性和格兰杰因果关系进行直接比较)。我们发现,对于更长的时间序列,多元转移熵能够捕捉所有网络结构的关键属性。二元方法对于较短的时间序列可以实现更高的召回率(敏感性),但随着可用数据的增加,无法控制误报(较低的特异性)。这导致聚类系数、小世界系数和富俱乐部系数被高估,最短路径长度和中心性被低估,以及度分布尾部变粗。因此,在解释通过相关性或成对统计依赖性度量获得的功能连接组的网络属性时,而不是更全面(但需要大量数据)的多元模型时,应谨慎使用。